lib5¢ Documentation
Release 0.6.1

Thomas Gilgenast

May 16, 2020






6

7

Installation

Introduction

API specification and conceptual documentation
Testing, building, and releasing

Changelog

lib5¢

Indices and tables

Python Module Index

Index

CONTENTS

25
29
33
299
301

305







lib5¢c Documentation, Release 0.6.1

A library for Chromosome Conformation Capture Carbon Copy (5C) analysis.

Contents:

CONTENTS 1



lib5¢c Documentation, Release 0.6.1

2 CONTENTS



CHAPTER
ONE

INSTALLATION

1ib5c can be installed directly via pip

’$ pip install lib5c

If you are having trouble with this step, make sure pip is up to date by running

’$ pip install --upgrade pip

1.1 Prerequisites

1ib5c currently only supports Python 2.7.11+ or Python 3.6+.
pip will install all required prerequisites automatically.

The complete list of required dependencies is listed in install_requires in setup.py.

1.2 Virtualenv installation walkthrough

It is highly recommended to install 1ib5c inside a fresh virtual environment to avoid package version conflicts.

If you don’t have virtualenv you may install it via

$ pip install virtualenv

The step-by-step procedure for installing 1ib5c inside a fresh virtual environment is then:

$ deactivate

$ virtualenv venv

$ source venv/bin/activate
(venv) $ pip install -U pip
(venv) $ pip install libbc
(venv)$ 1libbc -v

deactivate any existing virtualenv
create new python2 virtualenv
activate the new virtualenv

make sure pip is up to date
install 1ib5c

check version number

4 o S o o e

On Windows, the virtualenv can be activated by running:

> venv\Scripts\activate

instead.




lib5¢c Documentation, Release 0.6.1

1.3 Docker image

A Docker image for 1ib5c is also provided and can be used as shown here:

$ docker pull creminslab/lib5c:latest
$ docker run —-it creminslab/lib5c:latest
root@<container_id>:/# lib5c -v

We also provide a creminslab/1lib5c: slim Docker image which is based on python:2.7-slim.

It is recommended to bind a directory containing input files. For example:

$ docker run -it -v c:/data:/data creminslab/lib5c:latest
root@<container_id>:/# cd /data
root@<container_id>:/data# 1lib5c pipeline

1.4 Optional dependencies

You can install 1ib5c with all optional dependencies included by running

’$ pip install libbc[complete]

The individual optional dependencies can also be installed one-at-a-time; they are described in detail in the following
sub-sections.

1.4.1 bsub integration

If you use the LSF job scheduling system (also known as bsub), you should also install the bsub package to enable
1lib5c to leverage the job scheduler.

$ pip install bsub>=0.3.5

1.4.2 ICE matrix balancing

If you want to use the ICE matrix balancing algorithm in your analyses, you should also install the i ced package to
enable itin 1ib5c.

$ pip install iced>=0.4.0

This package may be difficult or impossible to install on Windows systems, in which case you can use the Knight-Ruiz
matrix balancing algorithm as an alternative.

1.4.3 BigWig file support

In order to support interaction with BigWig formatted files, you should also install the pyBigWig package to enable
itin 1ib5c.

$ pip install pyBigWig>=0.3.4

This package may be difficult or impossible to install on Windows systems.

4 Chapter 1. Installation



lib5¢c Documentation, Release 0.6.1

1.5 Special notes

1lib5c plots output using the matplotlib Python package. Instead of forcing a particular backend to be used,
1ib5c will respect the backend set in your matplotlibrc. As an example, the following matplotlibrc sets
the backend to ‘agg’:

$ cat ~/.config/matplotlib/matplotlibrc
backend: agg

On Windows systems the matplotlibrc is wusually located at C:\Users\<username>\.
matplotlib\matplotlibrc

Another way to set your default backend is to use the MPLBACKEND environment variable:

’$ export MPLBACKEND=agg

You can add this line to your ~/ .bashrc to set this environment variable on every login.

1.6 Editable mode installation

To install 1ib5c in editable mode:

$ git clone https://bitbucket.org/creminslab/lib5c
$ pip install -e ./lib5c

We recommend doing this is in a clean virtualenv.

To ensure that version information (e.g., as displayed by running 1ib5c -v on the command line) of an editable
install of lib5c remains correct, install setuptools-scm:

$ pip install setuptools-scm

1.5. Special notes 5



lib5¢c Documentation, Release 0.6.1

6 Chapter 1. Installation



CHAPTER
TWO

INTRODUCTION

What is 1ib5c? How is it laid out? What can I do with it?

These are the questions that will be answered in this section.

2.1 What is 1ib5c?

lib5c is a comprehensive, modular library for analyzing the results of Chromosome Conformation Capture Carbon
Copy (5C) experiments.

2.2 How is 1ib5c organized?

1ib5c is organized into three distinct layers:

Pipeline

Command-line tools

Function library

Each layer of the pyramid rests on the ones below it. At its base, 1ib5c is a library of modular, reusable functions
that can be used for various tasks in 5C analysis. A set of command-line tools rests on top of these functions, making
them easier to use for the most common use cases. The command-line tools in turn support a pipeline, which provides
a customizable interface for performing entire sequences of analysis steps quickly and reproducibly.




lib5¢c Documentation, Release 0.6.1

Each of the three tutorials in the following sections of this documentation explain one of the three levels by example,
starting from the top of the pyramid. You can start from the top, and go as deep as you feel comfortable going.

2.3 What can | do with 1ib5c?

This list shows just a few of the many things you can do with 1ib5c.

* Analyze:

Correct for locus-specific bias factors.

Bin or smooth fragment-level interaction data.

Construct distance-dependence models.

Perform statistical modeling.

Classify significant interactions from a two-condition experiment.

¢ Visualize:

Draw contact frequency heatmaps to see the architecture of the genome.

Draw bias factor heatmaps to idenfity covariates in the interaction data.

Visualize expected models and variance estimates.

Compare theoretical distributions to the real data.

Visualize enrichments between interaction classes and traditional genome annotations.

8 Chapter 2. Introduction



CHAPTER
THREE

API SPECIFICATION AND CONCEPTUAL DOCUMENTATION

This section describes the most important data structures and functions in more detail than the tutorial.

Contents:

3.1 Core data structures and file types

This section will introduce the core data structures and file types used ubiquitously throughout 1ib5c.

3.1.1 Core data structures

The core data structures used throughout 1ib5c are counts dicts and primermaps/pixelmaps, which serve as repre-
sentations of contact matrices and locus information, respectively.

Representing contact matrices

The 5C assay attempts to quantify interactions between pairs of genomic loci. These genomic loci do not span the
entire genome, as in Hi-C. Instead, they are restricted by the 5C primer design to contiguous blocks, which we will
refer to as regions.

Throughout 1ib5c, we represent the pairwise cis (inter-region) interaction frequencies between loci as a square,
symmetric matrix whose number of rows and columns is equal to the number of loci in the region. When there are
multiple regions, we will put multiple matrices (each representing one region) into a dictionary whose keys are the
region names as strings. Therefore, we end up with expressions like:

counts[region] [i, j] = 23.5

where region is the name of the region as a string, 1 and j are integer indices corresponding to loci within the
region, and counts [region] [i, J] gives the value of the interaction frequency between the i th and the ; th
locus of the region, which may be an integer or floating-point number.

We will commonly call these data structures “counts dicts”. More formally, the Python type annotation for a “counts
dict” is:

Dict[str, np.ndarray]




lib5¢c Documentation, Release 0.6.1

Representing information about loci

A contract matrix is meaningless when it is separated from information about what specific genomic loci it describes.
For every dictionary of contact matrices, we will usually also have a separate object that stores information about the
genomic loci whose interactions are quantified in the contact matrices. This will have the form:

primermap[region] [1i] = {
'chrom': 'chr3',
'start': 34107373,
'end': 34109022,
'name': '5C_329_Sox2_REV_1"',

'strand':

where region is the name of the region as a string, i is the index of the locus within the region, and
primermap[region] [i] is a dict storing information about the i th locus in the region. At a minimum, it
must indicate the chromosome, start, and end of the locus. In practice, it can also include additional information such
as the name of the locus or (for loci that are restriction fragments) the strand that the SC primer for this fragment was
designed to.

We will commonly call these data structures “primermaps” when the loci they describe are primers, and “pixelmaps”
when the loci they describe are bins (in reference to the “pixels” on a 5C heatmap). More formally, the Python type
annotation for either of these data structures is:

Dict[str, List[Dict[str, Any]l]]

where the keys to the outer dict are region names and the inner dict must have at least the keys ‘chrom’, ‘start’, and
‘end’.

3.1.2 Core file types

The core file types used as inputs and outputs throughout 1 ib5c are countsfiles and primerfiles/bin bedfiles.

Representing contact matrices

Countsfiles are used to represent contact matrices.
Representing information about loci

Special bedfiles called primerfiles are used to represent the loci whose interactions are contained in countsfiles.

3.2 Parallelization across regions

Given that the most common data structure is a counts dict (whose keys are the region names in our dataset), we often
want to call a function for each region in this dictionary:

’>>> result = {region: fn(counts[region]) for region in counts}

This pattern may become even more complicated if £n () returns a tuple, for example. Furthermore, it is clear
that overall operation is “embarrassingly parallel” with respect to the regions being processed. In order to sim-
plify our code, reduce redundancy, and gain the benefits of parallel execution, we introduce a new decorator:
@parallelize_regions, which can be found in the subpackage 1ib5c.util.parallelization. This

10 Chapter 3. API specification and conceptual documentation



lib5¢c Documentation, Release 0.6.1

decorator allows you to write £n () just once, writing it as if it processes only one matrix, but then call it with one
matrix or an entire counts dict as is convenient. For example, we can write

from lib5c.util.parallelization import parallelize_regions

@parallelize_regions
def fn(matrix):
return matrix + 1

and then call this function via

’result_counts = fn (counts)

or alternatively,

’result_matrix = fn(counts['Sox2'])

as is convenient for us.

3.2.1 Mechanism and caveats

The following sections dig into the mechanics behind the @parallelize_regions decorator and highlight some
important features and caveats.

First positional argument dependence

The @parallelize_regions decorator works by first checking to see if the first argument passed to the decorated
function is a dict. If it is not, the decorator does nothing, and the function is executed as normal. If it is a dict, the
execution of the function is parallelized across the keys of that dict. This means that if the non-parallelized version of
fn () expects a dict as its first positional argument, you will not be able to use the same name for both the parallel and
non-parallel versions of the function. To work around this, you can define

from lib5c.util.parallelization import parallelize_regions

def fn(somedict):
return somedict

fn_parallel = parallelize_regions (fn)

and then you can «call fn(somedict) when you want the non-parallelized version and
fn_parallel (doubledict) when you want the parallelization.

Per-region args and kwargs

By default, @parallelize_regions will simply copy all the other args and kwargs to each region’s invocation
of £n (). In other words, when you call £n (counts, arg_1l, arg_2), the following will be executed:

fn(counts['region_1'], arg_l, arg_2)
fn(counts|'region_2'], arg_l, arg_2)

However, if any arg or kwarg is a dict which has the same keys as the first positional argument (or, if the arg is a
nested dict, if its second level has these same keys), the arg will be replaced with each region’s entry in that dict. In

3.2. Parallelization across regions 11



lib5¢c Documentation, Release 0.6.1

other words, if we call fn (counts, primermap), where primermap is a dict whose keys match counts, the
following will be executed:

fn(counts['region_ 1'], primermap['region 1'])
fn(counts|['region_2'], primermap|['region_2"'])

This substitution is performed on an arg-by-arg basis, so you can use any mixture of normal and “regional dictionary”
arguments when calling the fucnction.

Automatic result unpacking

Let’s say £n () returns a tuple, for example:

from lib5c.util.parallelization import parallelize_regions

@parallelize_regions
def fn(matrix):
return matrix + 1, matrix - 1

When we call £n () on a single matrix, we expect to see

’bigger_matrix, smaller_matrix = fn (matrix)

The same thing will work when calling £n () on a counts dict:

’bigger_counts_dict, smaller_counts_dict = fn (counts)

In this case bigger_counts_dict and smaller_counts_dict will each be dicts whose keys match the keys
of counts.

Fallback to series execution

If an error is encountered during the parallel processing, the decorator will attempt to re-run the same job in series, in
hopes that this will result in a more readable stack trace.

Signature preservation

@parallelize_regions isitself decorated by the @pretty_decorator meta-decorator, which can be found
in 1ib5c.util.pretty_decorator. This allows the signature of the decorated function to be preserved
through the decoration process.

3.3 Plotting

We often want to write a function which plots something. In order to be useful in a large variety of scenarios, a
good library plotting function should be extremely flexible and support a large variety of options. We probably want
to support basically the same set of options for virtually every plotting function we write. In order to avoid writing
redundant code, we present the @plotter decorator, which is found in 1ib5c.util.plotting.

12 Chapter 3. API specification and conceptual documentation



lib5¢c Documentation, Release 0.6.1

3.3.1 Design principles

We expect a generic plotting function plot_fn () should take in some data and plot it to the default pyplot axis.
We expect to be able to override some details about the plot, including what axis should be plotted on, the plot title,
whether or not to add a legend, etc. Ideally, the function should return the axis it plotted on, which would allow the
caller to make further modifications to the plot before saving to disk. However, many clients will probably want to just
save the figure to disk as fast as possible, so an “automatic save” option should exist as well.

3.3.2 Examples

We consider the plotting function plot_fn ():

import matplotlib.pyplot as plt
from lib5c.util.plotting import plotter
@plotter

def plot_fn(x, y, **kwargs):
plt.scatter(x, vy)

Importantly, the @plotter API requires client functions to accept arbitrary = xkwargs in their signature.

A client may call

’ax = plot_fn(x, vy)

where the return value of plot_fn () will simply be the axis that was plotted on.

To plot to a specific axis called ax, the client may call

’ax = plot_fn(x, y, ax=ax)

To automatically save the figure to disk, the client may call

’plot_fn(x, y, outfile="plot.png')

Plots will be automatically saved at 300 dpi, but this can be overriden by calling

’plot_fn(x, y, outfile="'plot.png', dpi=800)

Plots will be styled with seaborn, using the 'ticks" axis style. To use a different seaborn style, the client can
call

’plot_fn(x, y, style='darkgrid")

The @plotter decorator will always automatically remove the seaborn styles after the call completes, allowing
future plotting calls to look “normal”.

To avoid using the seaborn styles and stick with matplot1lib defaults, the client can call

’plot_fn(x, y, style=None)

The plot will be despined with sns.despine () by default. To disable this, the client can call

’plot_fn(x, y, despine=False)

3.3. Plotting 13



lib5¢c Documentation, Release 0.6.1

The decorated plot_fn () will accept a kwarg called 1egend. By default, this kwarg is None, which leaves all
decisions about the legend in the hands of plot_fn (). If plot_£fn () adds a legend to the plot, but you wish to
remove it, call

’plot_fn(x, vy, legend=False) ‘

If plot_£fn () does not add a legend, but you wish to have one, call

’plot_fn(x, y, legend=True) ‘

If the legend is really large and you wish it to be added outside the plot area, you can call

’plot_fn(x, y, legend='outside') ‘

Other minor adjustments can be made to the plot with the kwargs illustrated in the following example call:

plot_fn(x, y, xlim=(0, 10), ylim=(-1, 1), xlabel="'number of cows',
ylabel="'relative change in grass', =xticks=11, yticks=[-1, 0, 1],
title="'cows vs grass')

Here we note that xt icks and yticks can be passed as either an integer (in which case the specified axis will have
that many evenly-spaced ticks) or as anything accepted by p1t . xticks () (in our example, a list of tick locations).

3.4 Trimming

An important early preprocessing step is the removal of low-quality primers from the dataset.

3.4.1 Command-line interface

Primer trimming can be accomplished on the command line by running

’$ 1lib5c trim ‘

For complete details on the usage of this command, see the output of

’$ lib5c trim -h ‘

3.4.2 Exposed functionality
The algorithms which make up the primer trimming framework can be found in the 1ib5c.algorithms.
t rimming subpackage.
The core API is exposed in the following convenience functions:
e ]lib5c.algorithms.trimming.trim primers ()
e lib5c.algorithms.trimming.wipe_counts ()
e libbc.algorithms.trimming.trim counts ()

The functions wipe_counts () and trim_counts () also have convenience wrappers which apply them over a
counts superdict (dict of counts dicts, whose first-level keys are replicate names), which are:

e lib5c.algorithms.trimming.wipe_counts_superdict ()

e libbc.algorithms.trimming.trim counts_superdict ()

14 Chapter 3. API specification and conceptual documentation



lib5¢c Documentation, Release 0.6.1

Workflow

The general workflow is to trim primers first (based on the quality of the counts matrices in the dataset), and then
either trim or wipe those counts matrices:

from lib5c.algorithms.trimming import trim_primers, trim_ counts_superdict

trimmed_primermap, trimmed_indices = trim_primers (primermap, counts_superdict)
trimmed_counts_superdict = trim_counts_superdict (counts_superdict, trimmed_indices)

The call to trim_primers () does not modify the counts_superdict, leaving the client to decide what to do
next.

Trimming versus wiping

trim_counts () removes rows and columns from the matrices in the counts dict, with the result that the dimensions
of these matrices will match the lengths of the values of t rimmed_primermap. This is the recommended way to
treat removal of low-quality fragments.

wipe_counts () does not change the dimensions of any matrix, and instead simply paints over the removed indices
according to its kwarg wipe_value. This can be useful when removing low-quality regions from already-binned
data, for example:

from lib5c.algorithms.trimming import trim_primers, wipe_counts_superdict

_, trimmed_indices = trim_primers (pixelmap, counts_superdict)
wiped_counts_superdict = wipe_counts_superdict (counts_superdict, trimmed_indices)

Notice that we discard the t rimmed_pixelmap from the first function call, because this pixelmap’s dimensions do
not match any of the counts dicts.

Trimming options

There are two different ways to assess the quality of a primer: its total cis contact count (row sum in the counts matrix)
or the fraction of its possible interactions which are nonzero. These two quality metrics are thresholded on by the two
kwargs of trim_primers (): min_sumandmin_frac.

3.5 Quantile normalization

Quantile normalization is a method for bringing disparate 5C libraries (of varying sequencing depth, library complex-
ity, etc.) to a comparable scale.

3.5.1 Command-line interfaces

The subcommand is

’$ 1ib5¢c gnorm

For detailed help, run

’$ 1ib5¢c gnorm -h

3.5. Quantile normalization 15



lib5¢c Documentation, Release 0.6.1

3.5.2 Exposed functionality

The subpackage for quantile normalization is 1ib5c.algorithms.gnorm
Two functions are exposed:

e libbc.algorithms.qgnorm.qgnorm/()

e lib5c.algorithms.gnorm.qnorm_counts_superdict ()

gnorm () performs quantile normalization on arbitrary data, and may be re-used in other contexts. It operates on
a table of input data, not the counts dicts (and superdicts) which are commonly used in the library. Therefore, the
wrapper function gnorm_counts_superdict () is provided to make this step easier for our 5C data.

3.6 Bias mitigation

5C read counts are strongly influenced by bias factors which are dictated by intrinsic properties of the restriction
fragments and primers involved in the reactions. Moreover, the influence of these bias factors can vary from replicate
to replicate. 1ib5c includes a wide variety of algorithms for mitigating the effects of these bias factors.

3.6.1 Approaches

A variety of approaches to bias mitigation are possible.

Explicit normalization (spline)

This approach involves fitting splines to the three-dimensional surfaces generated by plotting each entry of the contact
matrix on the z-axis, and setting the x- and y-axis positions according to some property of the upsteam and downstream
fragment involved in the ligation junction represented by that matrix entry. These fitted splines can then be simply
subtracted from the experimentally observed data.

To perform this normalization on the command line, run

’$ 1ib5c spline

Splines can be visualized by running

’$ 1ib5c plot visualize-spline

The exposed function for performing the spline normalization is I1ib5c.algorithms.
spline _normalization.iterative_spline _normalization().

The exposed function for visualizing the spline is 1 ib5c.plotters.splines.visualize spline ().

Simple matrix balancing approaches (kr and iced)

Matrix balancing approaches attempt to equalize the row sums of the contact matrix, without knowing anything about
the intrinsic properties of the restriction fragments.

The Knight-Ruiz matrix balancing algorithm can be used by running

$ 1ib5c kr

16 Chapter 3. API specification and conceptual documentation



lib5¢c Documentation, Release 0.6.1

The exposed function is 1ib5c.algorithms.knight_ruiz.kr_balance matrix().

The ICED matrix balancing algorithm is implemented by iced, and an easy-to-use interface to this package is exposed
in 1ib5c.

It can be used on the command line by running

’$ 1lib5c iced

if iced has been installed by running

’$ pip install iced

The exposed function is 1ib5c.contrib.iced.balancing.iced_balance_matrix().

Advanced matrix balancing (express)

The Express matrix balancing algorithm takes into account a simple one-dimensional distance-dependent expected
model when balancing, which can improve balancing performance given the wide dynamic range of interactions
across any given row of the interaction matrix.

It can be used on the command line by running

’$ 1lib5c express

The “Joint Express” variant first described in this library can be used by running

’$ lib5c express -J

The exposed functions are:
e lib5c.algorithms.express.express_normalize matrix()

e lib5c.algorithms.express. joint_express_normalize ()

3.6.2 Assessing bias factor profiles

Bias factor profiles can be visualized by running

’$ 1ib5c plot bias-heatmap

The exposed functionis 1ib5c.plotters.bias_heatmaps.plot_bias_heatmap ()

The overall balance of a contact matrix can be visualized by running

’$ 1ib5c plot boxplot

The exposed functionis 1ib5c.plotters.boxplots.plot_regional locus_boxplot ()

3.7 Binning and smoothing

To reduce spatial noise in 5C data, we can treat the 5C contact frequencies as a 2-D signal that can be smoothed with
various filtering functions. Depending on the original coordinates of the contact matrix and the coordinates we choose
to evaluate the filtered signal at, this process can be referred to as “binning” or “smoothing”.

3.7. Binning and smoothing 17


https://github.com/hiclib/iced/

lib5¢c Documentation, Release 0.6.1

3.7.1 Theoretical overview
We will create “filtering functions” to pass over the contact matrices. For generality in terms of the level of data the

filtering functions can be applied to, we will require that filtering functions compute values on “neighborhoods” of
points defined by spatial proximity to the point we want to evaluate the filtered signal at.

3.7.2 Command-line interfaces

Command-line interfaces for binning and smoothing countsfiles are provided directly in 1ib5c.

Binning

If we have a fragment-level countsfile called fragment_level.counts, a primer bedfile called primers.bed,
and a binned bedfile called bins .bed, we can run

’$ 1ib5c bin -w 20000 -p primers.bed -b bins.bed fragment_level.counts binned.counts

to bin the counts using a 20 kb window width.

For a complete list of command-line flags for the 1ib5c bin subcommand, we can run

’$ 1ib5c¢c bin -h

Smoothing

If we have a countsfile called unsmoothed. counts and a bedfile called 1oci .bed, we can run

’$ 1ib5c smooth -w 20000 -p loci.bed -b bins.bed unsmoothed.counts smoothed.counts

to smooth the counts using a 20 kb window width.

For a complete list of command-line flags for the 1ib5c smooth subcommand, we can run

’$ lib5¢c smooth -h

3.7.3 Exposed functionality

The algorithms which make up the filtering can be found inthe 1ib5c.algorithms. filtering subpackage.

Core API

The core API for filtering is in the form of three convenience functions:
e libbc.algorithms.filtering.bin_bin_filtering.bin_bin filter()

e lib5c.algorithms.filtering.fragment_fragment_filtering.
fragment_fragment_filter ()

e lib5c.algorithms.filtering.fragment_bin filtering.fragment_bin filter()

These functions take in a counts matrix and return a filtered counts matrix. They also take in a filter function, which
will be described in detail below. They also require information about the loci involved in the filtering. Finally, they
require a distance threshold for defining the neighborhood of points that will be passed to the filter function.

18 Chapter 3. API specification and conceptual documentation



lib5¢c Documentation, Release 0.6.1

Filter function API

Filter functions must take in a representation of a “neighborhood” around a point and return a scalar value representing
the evaluation of the filtered signal at that point. A neighborhood is represented as a list of “nearby points” where each
nearby point is represented as a dict of the following form:

{
'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist’ and ‘y_dist’ are its distances from the center of the neighborhood
along the x- and y-axis, respectively, in base pairs.

More formally, the Python type annotation for a filter function is:

Callable[[List[Dict[str, Any]]l], float]

The 1ib5c.algorithms. filtering. filter_functions module provides a framework for the construc-
tion of filter functions with desired properties. The key function exposed there is

libbc.algorithms.filtering.filter. functions.make_filter_ function()

which constructs a filter function according to the specification in the kwargs and returns it.

3.8 Expected modeling

5C data exhibit a strong distance-dependent background signal which is also influenced by local contact domain
structure. 1ib5c includes a variety of algorithms for modeling this background expected interaction frequency.

3.8.1 Command-line interfaces

The subcommand is

’$ 1ib5c expected

For detailed help, run

’$ 1lib5c expected -h

3.8.2 Exposed functionality

The subpackage responsible for expected modeling is 1 ib5c.algorithms.expected.
The most important exposed function is 1ib5c.algorithms.expected.make_expected matrix ().

To wuse a global expected model, you must also use Iib5c.algorithms.expected.
get_global_distance_expected (), leading to the following workflow:

from lib5c.algorithms.expected import make_expected_matrix, get_global_distance_
—expected

(continues on next page)

3.8. Expected modeling 19



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

distance_expected = get_global_distance_expected (observed_counts)
expected_counts = make_expected_matrix (observed_counts, distance_expected=distance_
—expected)

The following functions are provided for visualizing one-dimensional expected models overlayed over real data:
e Ilib5c.plotters.expected.plot_bin expected()

e lib5c.plotters.expected.plot__fragment_expected/()

3.9 Variance modeling

In order to obtain measures of statistical significance for 5C interactions, we need a quantitative measure of statistical
noise for each interaction. 1 ib5c provides a variety of methods for estimating this variance.

3.9.1 Command-line interfaces

To model the variance, run

’$ 1lib5c variance

To visualize variance estimates, run

’$ 1ib5c plot visualize-variance

3.9.2 Exposed functionality

The subpackage responsible for variance modeling is 1ib5c.algorithms.variance.
The top-level convenience function exposed is 1ib5c.algorithms.variance.estimate_variance ()
estimate_variance () provides easy access to all available variance estimation methods.

For an example of how to visualize variance estimates using lib5c.plotters.scatter.scatter () or
lib5c.plotters.curve fits.plot_fit (), take a look at 1ib5c.tools.visualize variance.
visualize variance_tool ().

3.10 Distributions

In order to call p-values for individual 5C interactions, we simply compare the observed value of the interaction to
its expected value (see Expected modeling) and its variance estimate (see Variance modeling) by using a statistical
distribution parameterized to have mean and variance equal to the predictions of the expected and variance models,
respectively.

3.10.1 Conceptual overview

We may wish to call p-values using a variety of different statistical distributions, each of which has a unique “native”
parameterization. To keep things from becoming too complicated, we ignore these “native” parameterizations and
instead always parameterize distributions with the same two parameters: mean and variance.

20 Chapter 3. API specification and conceptual documentation



lib5¢c Documentation, Release 0.6.1

3.10.2 Command-line interfaces

To call p-values, run

’$ 1ib5c pvalues

To plot the parameterized distributions over the real data, run

’$ 1lib5c plot visualize-fits

3.10.3 Exposed functionality

The exposed function is 1ib5c.util.distributions.call_pvalues ().
Additional utility functions are provided in 1 ib5c.util.distributions toease parameter conversion, etc.
The following functions are exposed for visualization of distributions:
e lib5c.plotters.fits.plot_fit ()
e lib5c.plotters.fits.plot_group_ fit ()
plot_fit () isareusable function for overlaying distributions.

plot_group_£fit () is a convenience function for overlaying parametrized distributions over groups of real data
points.

3.11 Thresholding

After calling p-values for interactions in each of several replicates, we want to find a way to combine this information
across all replicates to identify condition-specific interactions. 1ib5c provides a simple implementation of such a
procedure.

3.11.1 Conceptual background
We assume each replicate belongs to one of exactly two conditions, call them “A” and “B”. This implies that there are
three important classes of interactions we wish to recover:

e “A-only” (looping in condition A but not in condition B)

* “B-only” (looping in condition B but not in condition A)

 “constitutive” (looping in both conditions)

We will also recover a “background” class, which will be convenient when assessing enrichments.

3.11.2 Command-line interface

To perform the simple two-way thresholding, run

$ lib5c threshold

3.11. Thresholding 21



lib5¢c Documentation, Release 0.6.1

3.11.3 Exposed functionality

The subpackage for thresholding is 1ib5c.algorithms.thresholding.

The main exposed functionis 1 ib5c.algorithms.thresholding. two_way_thresholding().

The

following functions

two_way_thresholding():

e 1ibbc.

e 1ib5c

e ]ibbc.
e ]ib5c.

algorithms
.algorithms
algorithms

algorithms

3.12 Enrichments

are exposed to compute various useful metrics from the results of
.thresholding.kappa /()

.thresholding.concordance_confusion()
.thresholding.color_confusion()
.thresholding.count_clusters()

An important endgame step in 5C analysis is the quantification of overlap between specific interaction classes and
traditional genomic annotations. 1ib5c provides a system for performing such an enrichment analysis.

3.12.1 Command-line interface

To plot traditional enrichments, run

’$ 1lib5c plot enrichment

To plot the enrichment of occupied motifs with a specific orientation, run

’$ 1ib5c plot convergency

3.12.2 Exposed functionality

The exposed functions for computing enrichments are:

e 1ib5c.

1libbc.
1libbc.
lib5c.

1ib5c.

algorithms
algorithms
algorithms
algorithms

algorithms

.enrichment.count_intersections_all()
.enrichment.get_annotation_percentage_all ()
.enrichment.get_fold change_all/()
.enrichment.get_fisher_ exact_pvalue_all/()

.convergency.compute_convergency ()

The exposed functions for visualization are:

e 1ib5c
e 1ib5c
* 1ib5c
e 1ib5c

.plotters.
.plotters.
.plotters.

.plotters.

enrichment.plot__looptype_vs_annotation_heatmap ()
enrichment.plot_annotation_vs_annotation_heatmap ()
enrichment.plot_stack_bargraph ()

convergency.plot_convergency ()

22

Chapter 3. API specification and conceptual documentation



lib5¢c Documentation, Release 0.6.1

3.13 Clustering

Sometimes, we want to group 5C interactions into clusters according to some perceived spatial and architectural
related-ness. This can happen when we see several nearby “pixels” on a 5C heatmap with high intensities. This
section explains the functionality of the 1ib5c clustering framework, which can be used to identify these clusters

using any of a suite of clustering algorithms.

3.13.1 Command-line interfaces

A command-line interface to this clustering framework exists as a separate repository, which can be found at https:

//bitbucket.org/creminslab/3d-clusterbot

3.13.2 Exposed functionality

The algorithms which make up the clustering framework can be found inthe 1 ib5c.algorithms.clustering

subpackage.

Core data structures

peak (Dict [str, numeric]) Withing the clustering framework, the term peak is used to refer to an object that

represents a single interaction. The data structure used to represent a peak is a dictionary of the form:

{
'x': 4,

v's 7,

'value': 12.43

we can think of peaks as an unfolded contact matrix, where each entry in the contact matrix gets represented as
a separate dictionary. This representation may seem overly verbose, but it has the dual advantage of becoming
sparse when interactions when peaks with values below some threshold are excluded from clustering, and of

providing a simple representation of clusters as lists of peaks (see below).

cluster (List [Dict [str, numeric]]) Within the clustering framework, the term cluster is used to refer to a

list of peaks that have been determined to belong together.

Core API

Many different paradigms for clustering operations exist. There are three broadly-defined clustering operations:
1. cluster assembly (the initial construction of clustered from a flat list of candidate peaks)
2. cluster merging (the merging of two clusters into one cluster)

3. cluster splitting (the splitting of clusters into subclusters)

Cluster assembly

The API for cluster assembly is to define a single function

make_clusters (peaks, =xxkwargs)

3.13. Clustering

23


https://bitbucket.org/creminslab/3d-clusterbot
https://bitbucket.org/creminslab/3d-clusterbot

lib5¢c Documentation, Release 0.6.1

that takes in a list of candidate peaks and returns a list of clusters.
The cluster assembly paradigms available are:

knn, via 1ib5c.algorithms.clustering.knn.make clusters() Assembles clusters by classifying
each peak into a cluster according to the cluster membership of its nearest neighbors.

adjacency, via 1ib5c.algorithms.clustering.adjacency.make clusters () Assumes the clusters
are simply the connected components made up of peaks, as judged by spatial adjacency.

greedy, via 1ib5c.algorithms.clustering.greedy.make clusters () Attempts to grow clusters in
a greedy fashion by absorbing all nearby peaks and clusters.

Cluster merging

The API for cluster merging is to define a single function

merge_to_which (clusters)

which takes in a list of clusters and returns the index of the cluster that clusters [0] should be merged into, or -1
if clusters [0] shouldn’t be merged.

The cluster merging paradigms available are:

adjacency, via 1ib5c.algorithms.clustering.adjacency.merge to_which () Merges adjacent
clusters together.

enclave, via 1ib5c.algorithms.clustering.enclave.merge to_which () Merges clusters together
if one cluster completely surrounds another.

To recursively merge a list of clusters using amerge_to_which () function, a utility function is provided as
libbc.algorithms.clustering.util.merge_clusters()

which takes in the list of clusters and a reference to the merge_to_which () function that defines the merge rule to
use, and returns a list of recursively-merged clusters.

Cluster splitting

The API for cluster splitting is to define a single function

split_clusters(clusters, xxkwargs)

which takes in a list of clusters and returns a list of clusters that have been recursively split according to some splitting
rule. By convention, the splitting rule should be defined in a function called split_cluster (), but different
splitting paradigms may use different signatures for this function.

The cluster splitting paradigms available are:

valley, via 1ib5c.algorithms.clustering.valley.split clusters () Splits clusters by identifying
“valleys” between the “mountains” that correspond to true clusters.

quasicontiguity, via 1ib5c.algorithms.clustering.quasicontiguity.split_clusters()
Splits clusters according to a “quasicontiguity” criterion where clusters that are physically separated into two
sufficiently large and sufficiently distant subcomponents get split into separate clusters.

24 Chapter 3. API specification and conceptual documentation



CHAPTER
FOUR

TESTING, BUILDING, AND RELEASING

This section explains our testing, building, and release process.

4.1 Maintenance automation

We use tox to orchestrate our maintenance tasks. To use tox, all you need to do is install it (pip install tox).
All other dependencies will be managed by tox.

4.2 Linting and testing

To run linting and testing across all supported Python versions, run

’$ tox

To lint, run

’$ tox —e lint

To run tests for a specific Python version (e.g., 2.7), run

’$ tox —e py27-unpinned

We lint with flake8. and run tests with nosetests.
We generally follow PEP 8, with a few exceptions which are listed in setup.cfg.

Tests are primarily set up via doctest, though a few are set up using unittest and live in 1ib5c . <some_module>.
tests.test_<some_feature>.py.

Our CI pipeline (run in Bitbucket Pipelines right inside the repo) runs tox under all our test environments for every
commit.

We pin one specific set of dependency versions in requirements.txt. This is the set of pinned versions used
for our Docker image builds as well as special pyXX—-pinned test environments in tox. The pyXX-unpinned
test environments do not pin any package versions; therefore, they closely resemble the experience of a new user
attempting torun pip install lib5c.

The pyXX-pinned test environments are skipped on Windows, since our pinned package versions in
requirements.txt include some packages which are not installable on Windows.

25


https://tox.readthedocs.io/
http://flake8.pycqa.org/
https://nose.readthedocs.io/
https://www.python.org/dev/peps/pep-0008/
https://docs.python.org/2/library/doctest.html
https://docs.python.org/2/library/unittest.html

lib5¢c Documentation, Release 0.6.1

4.3 Committing

The git repository for 1ib5c is https://bitbucket.org/creminslab/lib5c/.

We roughly try to follow GitHub Flow when committing, trying to never allow the master branch to contain breaking
code.

4.4 Building

We build Python wheels and source distributions, as well as Docker images.

4.4.1 Versioning

Before building, you can optionally tag the release with a version number. We try to follow semantic versioning

whenever possible. Our version tags do not include a leading “v” (e.g., we would use 0.5. 3 as a tag rather than
v0.5.3). To tag, run

$ git tag 0.5.1
$ git push --tags

We use setuptools-scm to obtain information about the current version directly from git.

4.4.2 Python wheel and source distribution

To build the wheel for 1ib5c, run

’$ python setup.py bdist_wheel

To build the source distribution for 1ib5c, run

’$ python setup.py sdist

4.4.3 Docker image

To build both normal and slim docker images, run

’$ tox —-e docker build

To promote the current images (normal and slim) to the 1atest and s1im tags, respectively, run

’$ tox —-e docker promote

To build the 1ib5c Docker images, we pass the version name into the Dockerfile as a build-arg called
VERSION. To get the version in a cross-platform way, we provide a utility script 1Lib5c/_version.py which,
when run, simply prints the current version. Running this script requires that either libSc or setuptools-scm (pip
install setuptools_scm) be installed. setuptools-scm is likely to be the easier option since it is much lighter
to install (it has no dependencies), but developers who have already installed lib5c (e.g., in dev mode) do not need to
install setuptools-scm. The “docker” tox testenv installs setuptools-scm in its own isolated environment.

We supply two images for each tag: one based on python:2.7 (about 1.3 GB total) and a second with a —s1im
suffix based on python:2.7-s1lim (about 600 MB total). The main Dockerfile is located in the root directory of

26 Chapter 4. Testing, building, and releasing


https://bitbucket.org/creminslab/lib5c/
https://guides.github.com/introduction/flow/
https://semver.org/
https://pypi.org/project/setuptools-scm/
https://pypi.org/project/setuptools-scm/

lib5¢c Documentation, Release 0.6.1

the project and is recommended if you already use the python: 2.7 base image anywhere else on your machine.
The —s1im Dockerfile is located in docker—slim/ and is recommended if you don’t plan to use python:2.7 as
a base image for any other work on your machine.

At the current time, we only supply these Python 2.7 based images. In the future, we may also supply Python 3 based
images.

Note that we tag the Docker image with the direct output of git describe, since Docker image tags can’t contain
plus signs.

4.5 Releasing

We release wheel and source distributions to PyPI and the Docker images to Docker Hub.

4.5.1 PyPI

To build both the wheel and source distribution and upload them to PyPI, run

$ python setup.py sdist bdist_wheel upload

4.5.2 Docker Hub

To push the Docker images to Docker Hub, run

$ tox —e docker push
$ tox -e docker pushlatest # pushes the latest and slim tags

These commands assume you’ve logged in with Docker by running docker login.

4.6 Documentation

To build docs, run

’$ tox —-e docs

Documentation pages are stored in docs/ and are built using Sphinx.

We use the sphinxcontrib.apidoc extension to run sphinx—apidoc on every doc build. This means that the apidoc-
generated 1ib5c+ . rst files should not be checked into git. The tox testenv deletes these files for you after building
the docs.

Docs are built automatically on every commit to dev, publishing the results to https://lib5c.readthedocs.io/en/latest/.

Tagged versions can be added to the list of stable versions via the readthedocs website. The latest tagged version on
master will be published to https://libSc.readthedocs.io/en/stable/.

4.7 Tutorials

To test the tutorials, run

4.5. Releasing 27


https://pypi.org/
https://hub.docker.com/
http://www.sphinx-doc.org/
https://github.com/sphinx-contrib/apidoc
https://lib5c.readthedocs.io/en/latest/
https://lib5c.readthedocs.io/en/stable/

lib5¢c Documentation, Release 0.6.1

$ tox —e tutorials

Tutorial source notebooks (containing no outputs) are stored in the tutorials/ directory under the project root.

The tutorials are run by Bitbucket Pipelines but need to be triggered manually, which results in the creation of new
notebooks that include outputs. These resulting notebooks are pushed to a separate repository.

To strip outputs from the notebooks before committing them back to the lib5c repo, run:

’$ python tutorials/clean.py

4.8 Cheat sheet

The commands explained above are collected all in one place in the cheat sheet below:

# lint and test
tox

# git commit
git commit -m 'commit message'
git push

# git tag (optional)
git tag 0.5.1
git push —-tags

# build wheel
python setup.py bdist_wheel

# build and upload to pypi
python setup.py sdist bdist_wheel upload

# local Docker build and tag
tox —e docker build
tox —e docker promote

# push Docker images
tox —e docker push
tox —e docker pushlatest

# build docs
tox —-e docs

# run tutorials
tox —-e tutorials

# cleanup tutorials
python tutorials/clean.py

28 Chapter 4. Testing, building, and releasing


https://github.com/thomasgilgenast/lib5c-tutorials

CHAPTER
FIVE

CHANGELOG

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project attempts to adhere to Semantic Versioning.

5.1 0.6.1 2020-05-16

5.1.1 Added

¢ A license (MIT).

5.1.2 Changed

* Reduced the usage of shortcut imports to improve compatibility with clctools, see clctools#4.

5.1.3 Fixed

* Minor bugs: #77, #78, #50, #81.

5.2 0.6.0 - 2020-03-11

This version finally brings Python 3 support to libSc!

Currently all tests and all tutorials pass under both Python 2.7 and Python 3.6, but it’s possible that a few bugs exist in
areas with low test coverage.

5.2.1 Added

» Experimental Python 3 support, see #54.
* New functionality for getting data for the tutorials in 1ib5c.util.demo_data, see #75.

e New utility function for loading config files using ConfigParser: lib5c.util.config.
parse_config().

29


https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://bitbucket.org/creminslab/clctools/issues/4
https://bitbucket.org/creminslab/lib5c/issues/77
https://bitbucket.org/creminslab/lib5c/issues/78
https://bitbucket.org/creminslab/lib5c/issues/50
https://bitbucket.org/creminslab/lib5c/issues/81
https://bitbucket.org/creminslab/lib5c/issues/54
https://bitbucket.org/creminslab/lib5c/issues/75

lib5¢c Documentation, Release 0.6.1

5.2.2 Changed

* numpy arrays containing strings are now always created with a “U” dtype.

5.2.3 Fixed
* You can now pass a (positions, labels) tupletothe xticks and yticks kwargs of a function deco-
rated with @plotter, see #25.

e When running in Python 3 environments where ConfigParser is not available, the default pipeline config will
have all its “%” symbols escaped when it is dropped to disk, see #73.

* Y-axis gene tracks now appear correctly on trans heatmaps, see #69.
* Two-way thresholding now works even when there is only one region, see #71.

* Quoting paths with wildcards when passing them to libSc commands no longer prevents glob expansion in
Windows, see #76.

5.2.4 Updates/maintenance

* Bumped minimum matplotlib dependency, see #59.
* Minor documentation improvements, see #63, #64, and 18a7f6.

» Changed testing/linting to use tox. tox now serves as a centralized place to control maintenance-related actions
like running the tutorials, building Docker images, testing the doc build, etc.

* Since tox doesn’t support shell redirection/expansion, we moved the Docker one-liners into a new utility script
_docker.py in the project root which is called by the new docker testenv (tox —-e docker).

* Overhauled doc build process. We now use sphinxcontrib-apidoc to automatically run sphinx—-apidoc on
every doc build, avoiding the need to commit the per-module apidoc-generated .rst files to git. We also use
the readthedocs config file to configure the doc build on readthedocs. Both the local (tox —e docs) and
readthedocs builds are now configured to exit when they encounter a warning.

* Reduced the fragility of many doctest cases that relied on the ordering of dictionary keys.

 Streamlined Docker image build so that building the wheel beforehand is no longer necessary, see #67. This
also fixes #68.

* We now use setuptools-scm to manage version information instead of versioneer. We repurposed the existing
lib5c._version module to provide setuptools-scm specific functionality.

* Added dependency on configparser to make config file parsing more consistent across Python versions.
* Relaxed maximum version constraint on python-daemon, since luigi seems to be handling this now.

* Replaced references to pandas’s deprecated get_matrix () bound method with the now-recommended
values property.

* Thanks to #75 and #76, tutorials have been updated to use 1ib5c.util.demo_data and now run on Win-
dows (tox —e tutorials). Tutorials now run on Python 3.6.

30 Chapter 5. Changelog


https://bitbucket.org/creminslab/lib5c/issues/25
https://bitbucket.org/creminslab/lib5c/issues/73
https://bitbucket.org/creminslab/lib5c/issues/69
https://bitbucket.org/creminslab/lib5c/issues/71
https://bitbucket.org/creminslab/lib5c/issues/76
https://bitbucket.org/creminslab/lib5c/issues/59
https://bitbucket.org/creminslab/lib5c/issues/63
https://bitbucket.org/creminslab/lib5c/issues/64
https://bitbucket.org/creminslab/lib5c/commits/18a7f6
https://tox.readthedocs.io/en/latest/
https://pypi.org/project/sphinxcontrib-apidoc/
https://docs.readthedocs.io/en/stable/config-file/v2.html
https://bitbucket.org/creminslab/lib5c/issues/67
https://bitbucket.org/creminslab/lib5c/issues/68
https://pypi.org/project/setuptools-scm/
https://bitbucket.org/creminslab/lib5c/issues/75
https://bitbucket.org/creminslab/lib5c/issues/76

lib5¢c Documentation, Release 0.6.1

5.3 0.5.5 - 2020-02-04

5.3.1 Changed

* Enabled extrapolationin 1ib5c.util.lowess.lowess_£fit (), see #60.

5.3.2 Updates/maintenance

 Enforce maximum supported version of stat smodels since they are no longer building Python 2 wheels.

5.4 0.5.4 - 2019-06-07

First wave of major heatmap plotting upgrades plus streamlining of the release process via Bitbucket Pipelines.

5.4.1 Added

* A changelog, see #47.

5.4.2 Changed

» ExtendableHeatmap ChIP-seq track and gene track plotting are now faster thanks to the use of PolyCollection
and LineCollection, see #28.

5.4.3 Fixed

* Bug #56.

5.4.4 Updates/maintenance

» Updated f£1ake8 configuration (to match previous behavior when using latest version of £1ake8).
e Simplified .gitignore.

* Tests are now performed by Bitbucket Pipelines on every push.

» Reworked documentation to use Read the Docs.

* Moved tutorials to new tutorials/ directory under project root.

* Tutorials are now built and published as an independent step in Bitbucket Pipelines, separate from the documen-
tation build process.

* Deployment to PyPI and Docker Hub is now performed on tag push by Bitbucket Pipelines.

5.5 0.5.3-2018-10-15

First official release, corresponds to what was used in the final version of this paper.

5.3. 0.5.5-2020-02-04 31


https://bitbucket.org/creminslab/lib5c/issues/60
https://bitbucket.org/creminslab/lib5c/issues/47
https://bitbucket.org/creminslab/lib5c/issues/28
https://bitbucket.org/creminslab/lib5c/issues/56
https://readthedocs.org/
https://doi.org/10.1016/j.cels.2019.02.006

lib5¢c Documentation, Release 0.6.1

5.6 Diffs

* 0.6.1
* 0.6.0
* 055
* 054
* 053

32

Chapter 5. Changelog


https://bitbucket.org/creminslab/lib5c/branches/compare/0.6.1..0.6.0#diff
https://bitbucket.org/creminslab/lib5c/branches/compare/0.6.0..0.5.5#diff
https://bitbucket.org/creminslab/lib5c/branches/compare/0.5.5..0.5.4#diff
https://bitbucket.org/creminslab/lib5c/branches/compare/0.5.4..0.5.3#diff
https://bitbucket.org/creminslab/lib5c/src/0.5.3

CHAPTER
SIX

LIB5C

6.1 lib5c package

6.1.1 Subpackages
lib5c.algorithms package

Subpackages

lib5c.algorithms.clustering package
Submodules
lib5c.algorithms.clustering.adjacency module

Module for assembling or merging clusters using a simple adjacency heuristic.

lib5c.algorithms.clustering.adjacency.make_clusters (peaks)
Clusters peaks by adjacency.

Parameters peaks (1ist of peaks)— The peaks to cluster.
Returns The clustered peaks.
Return type list of clusters

lib5c.algorithms.clustering.adjacency.merge_to_which (clusters)
Determines which other cluster, if any, the first cluster in a list of clusters should be merged into.

Parameters clusters (1ist of clusters) — The list of clusters to consider. Ideally, this
list should be sorted in ascending order of cluster size.

Returns The index of the cluster that the first cluster should be merged into. If the cluster should
not be merged, the value will be -1.

Return type int
Notes

Under the adjacency heuristic, the condition for merging two clusters is that they must contain peaks that are
immediately adjacent to each other in 2-D space.

33



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.clustering.enclave module

Module for merging clusters using an enclave-swallowing heuristic.

lib5c.algorithms.clustering.enclave.merge_to_which (clusters)
Determines which other cluster, if any, the first cluster in a list of clusters should be merged into.

Parameters clusters (1ist of clusters) — The list of clusters to consider. Ideally, this
list should be sorted in ascending order of cluster size.

Returns The index of the cluster that the first cluster should be merged into. If the cluster should
not be merged, the value will be -1.

Return type int

Notes

Under the enclave heuristic, the condition for merging an orphan cluster into a parent cluster is that the orphan
cluster’s peaks must have more adjacent neighbors among the parent cluster’s peaks than among the orphan
cluster’s peaks.

lib5c.algorithms.clustering.greedy module

Module for assembling clusters using a greedy heuristic.

lib5c.algorithms.clustering.greedy.make_clusters (peaks)
Merges peaks using a greedy merge criterion that grows clusters by iteratively assimilating all peaks within r +
2 units of the existing cluster’s centroid where r is thre cluster’s current radius.

Parameters peaks (1ist of peaks)— The peaks to be clustered.
Returns The clustered peaks.

Return type list of clusters

lib5c.algorithms.clustering.knn module

Module for assembling clusters using an unassisted k-nearest neighbors heuristic.

lib5c.algorithms.clustering.knn.classify_ peak (pedk, neighbors, clusters,
peak_to_clusters, automove=True,

weighted=False)
Assigns the most fitting cluster to a peak given a list of its neighbors.

Parameters
* peak (peak) — The peak to classify.

* neighbors (1ist of peaks)-The peaks that should determine the query peak’s clas-
sification.

* clusters (list of clusters)— A list of clusters to classify the query peak into.

* peak_to_clusters (dict of (int, int) tuples)-Thekeys are (x,y) tuples
that represent peak locations. The values are the indices of the cluster for that peak. If the
value is -1, it indicates that the peak does not belong to any cluster.

34 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

* automove (bool) — If True, the peak will automatically be moved to the appropriate
cluster, or a new cluster will be appended to clusters. If False, the index of the appropriate
target cluster will be returned. If there is no appropriate target cluster, -1 will be returned.

* weighted (bool) — If True, weigh the votes using peak weight and distance. If False,
treat the votes from each peak as equal.

Returns The index of the appropriate target cluster. This function has no return value unless auto-
move is False.

Return type int (sometimes)

Notes

This function uses a simple unweighted voting heuristic to determine which existing cluster in clusters the query
peak should be classified into. If no suitable existing cluster is found, a new cluster is created containing only
the query peak. This cluster is then appended to clusters. Pass the kwarg weighted=True to use a weighted

voting heuristic.

lib5c.algorithms.clustering.knn.direction_score (peak, neighbors)
Calculates a direction-score for a peak given its neighbors.

Parameters

* peak (peak) — The query peak.

* neighbors (1ist of peaks)— The query peak’s neighbors.
Returns The direction-score.

Return type float

Notes

Higher direction-scores are better.

lib5c.algorithms.clustering.knn.distance_score (neighbors)
Calculates a distance-score for a peak given its neighbors.

Parameters neighbors (1ist of peaks)— The query peak’s neighbors.
Returns The distance-score.

Return type float

Notes

Lower distance-scores are better.

lib5c.algorithms.clustering.knn.get_knn (peak, peaks, k)
Given a list of peaks and a query peak, returns the k nearest neighbors of the query peak.

Parameters

* peak (peak) — The query peak to for which nearest neighbors should be identified.

* peaks (1ist of peaks)— The peaks that are candidates to be nearest neighbors.

e k(int)-

6.1. lib5c package 35



lib5¢c Documentation, Release 0.6.1

Returns The k nearest neighbors of the query peak among peaks. If fewer than k peaks were pro-
vided, the length of this list will be shorter than k.

Return type list of peaks

Notes

peak may be present in peaks, but it will not be returned as a neighbor.

lib5c.algorithms.clustering.knn.make_clusters (peaks, k=8, dist_score=5, dist_k=8,

dir_score=0.3, dir_k=38)
Performs k-nearest neighbors clustering of peaks.

Parameters
* k (int) — The number of nearest neighbors to consider when clustering.
* dist_score (float)— The distance-score threshold to use when clustering.

* dist_k (int)-The number of nearest neighbors to consider when calculating the distance
score.

* dir_score (float) — The direction-score threshold to use when clustering.

* dir_k (int) - The number of nearest neighbors to consider when calculating the direction
score.

Returns A tuple whose first element is the list of merged clusters, whose second element is the list
of peaks that did not pass the distance score threshold, and whose third element is the list of
peaks that did not pass the direction score threshold.

Return type list of clusters, list of peaks, list of peaks

lib5c.algorithms.clustering.quasicontiguity module

Module for splitting clusters using a quasicontiguity heuristic.

lib5c.algorithms.clustering.quasicontiguity.split_cluster (cluster, dis-
tance_threshold=3,

size_threshold=2)
Identifies the subclusters of a cluster, as determined by quasicontiguity and a size threshold.

Parameters
e cluster (cluster) - The cluster to determine the subclusters of.

* distance_threshold (float) — If two peaks are separated by a distance less than
this threshold, they are considered “quasicontiguous”.

e size_threshold (int)-Ifthe size of a subcluster would be smaller than this threshold,
that subcluster is not split from its parent.

Returns The subclusters of the query cluster.
Return type list of clusters

lib5c.algorithms.clustering.quasicontiguity.split_clusters (clusters, dis-
tance_threshold=3,

size_threshold=2)
Iteratively splits all clusters in a list by quasicontiguity (as determined by a distance and size threshold) and

returns the resulting subclusters.

36 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Parameters
* clusters (list of clusters)— The clusters to split.

* distance_threshold (float) — If two peaks are separated by a distance less than
this threshold, they are considered “quasicontiguous”.

e size_threshold (int)-If the size of a subcluster would be smaller than this threshold,
that subcluster is not split from its parent.

Returns The list of split clusters.

Return type list of clusters

lib5c.algorithms.clustering.util module

Module containing utility functions for clustering 5C interactions.

lib5c.algorithms.clustering.util.array_index_to_peaks (idx)
Convert a dense boolean array to a sparse list of peaks.

Parameters idx (np.ndarray)— Boolean array to convert.
Returns The peaks.
Return type list of peaks

lib5c.algorithms.clustering.util.belongs_to (peak, cluster)
Checks if a peak belongs to a cluster.

Parameters

* peak (peak) — The query peak.

e cluster (cluster)— The cluster to search for it in.
Returns True if peak belongs to cluster, False otherwise.
Return type bool

lib5c.algorithms.clustering.util.belongs_to_which (peak, clusters)
Identifies which cluster out of a list of clusters, if any, a peak belongs to.

Parameters
* peak (peak)— The query peak to consider.
* clusters (I1ist of clusters)— The clusters to look for the query peak in.

Returns The index of the cluster within the list of clusters which contains the query peak, or -1 if
no cluster in the list of clusters contains the query peak.

Return type int

lib5c.algorithms.clustering.util.center_of_mass (cluster)
Computes the center of mass, or centroid, of a cluster.

Parameters cluster (cluster)— The cluster to consider.
Returns The centroid of the cluster.

Return type 1D numpy array of length 2

6.1. lib5c package 37



lib5¢c Documentation, Release 0.6.1

Notes

For the purpose of this calculation, the mass of a peak is taken to be its value.

lib5c.algorithms.clustering.util.clusters_to_array (clusters, size)
Assembles clusters into a 2-D array for plotting on a heatmap.

Parameters
* clusters (1ist of clusters)— The clusters to be converted to a 2-D array.

* size (int) — The height and width of the array to generate. This should be equal to the
number of bins in the region.

Returns A 2-D array with each clusters having been assigned a different sequential integer value for
all its pixels. The next consecutive integer is a gap value, and then the one after that is a default
value for all pixels not in a cluster.

Return type 2-D array

Notes
It is recommended to plot the resulting array using a rapidly-changing colorscale such as
plt.get_cmap(‘gist_ncar’).

lib5c.algorithms.clustering.util.£flatten_clusters (clusters)
Flattens a list of clusters to a flat list of peaks.

Parameters clusters (list of list of peaks)— The clusters to flatten.
Returns The flattened peaks.
Return type list of peaks

lib5c.algorithms.clustering.util.get_cluster (x, Yy, clusters)
Identifies which cluster, if any, a specified point belongs to.

Parameters
* x (int) — x-coordinate of the point to consider.
* y (int) - y-coordinate of the point to consider.
e clusters (list of clusters)— Listof clusters to search.

Returns The index of the cluster which contains the point (X,y). If no cluster in the list contains the
point, the value is -1.

Return type int

lib5c.algorithms.clustering.util.get_vector (peak)
Gets an array representing a peak’s location.

Parameters peak (peak) —
Returns The peak’s location as an (X, y) ordered pair.
Return type 1D numpy array of length 2

lib5c.algorithms.clustering.util.ident (peakl, peak2)
Checks whether two peaks are the same peak.

Parameters

* peakl (peak) -

38 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

* peak2 (peak) —
Returns True if the peaks are the same peak, False otherwise.
Return type bool

lib5c.algorithms.clustering.util.identify nearby clusters (cluster, clusters)
Figures out which other clusters from a list of clusters are adjacent to a query cluster.

Parameters
* cluster (cluster)— The query cluster to consider.

* clusters (1ist of clusters) — The clusters to check for adjacency to the query
cluster.

Returns The indices of clusters within the list of clusters that were found to be adjacent to the query
cluster.

Return type list of int

Notes

This may include duplicates. To get rid of them, just use:

set (identify_nearby_clusters(cluster, clusters))

To identify one nearby cluster at random, use:

nearby_clusters = identify_nearby_clusters (cluster, clusters)
if nearby_clusters:
nearby_clusters[0]

To see what clusters are near a single peak, use:

identify_nearby_clusters ([peak], clusters)

If cluster is in clusters, the cluster will be reported as adjacent to itself. As an example of how to avoid this in

cases where it is undesirable, use:

’filter(lambda x: x > 0, identify_nearby_clusters(clusters[0], clusters))

lib5c.algorithms.clustering.util.merge_clusters (clusters, merge_to_which)
Recursively merges clusters together from smallest to largest according to a specified merge function.

Parameters

* clusters (list of clusters) — The clusters to be merged. All elements will be
removed from this list when this function is called.

* merge_to_which (function)— Function that takes in a list of clusters and returns the
index of the cluster the first cluster in the list should be merged into. If the first cluster in
the list should not be merged, this function should return -1.

Returns The list of merged clusters.
Return type list of clusters

lib5c.algorithms.clustering.util.peaks_to_array_index (peaks, shape)
Convert a sparse list of peaks to a dense boolean array.

Parameters

6.1. lib5c package

39




lib5¢c Documentation, Release 0.6.1

* peaks (list of peaks)— The peaks to convert.

* shape (tuple of int)- The shape of the resulting array.
Returns The dense boolean array.
Return type np.ndarray

lib5c.algorithms.clustering.util.reshape_cluster_array_ to_dict (cluster_array,
ig-
nored_values=None)
Reshapes loops dict structure into a nested dict structure.

Parameters

* cluster_array (np.ndarray) - The entries of this array are cluster ID’s. Values that
will be ignored include “’, ‘n.s.’, ‘NA’, ‘NaN’, np.nan.

* ignored_values (set, optional)— Set of values in cluster_array that should not
be treated as cluster ID’s. By default this will be {**, ‘n.s.’, ‘NA’, ‘NaN’, np.nan}

Returns

The outer dict’s keys are cluster ID’s, its values are lists of points belonging to that cluster, with
the points being provided as dicts with the following strucure:

{

'x': int,
'yv': int,
'value': O

Return type Dict[Any, List[Dict[str, Any]]]

Notes

To rectangularize the returned data structure against a full list of cluster ID’s, use something like:

cluster_dict = reshape_cluster_array_to_dict (cluster_array)
for cluster_id in all_cluster_ids:
if cluster_id not in cluster_dict:
cluster_dict[cluster_id] = []

Examples

>>> import numpy as np

>>> cluster_array = np.array([['', 'cow'], ['cow', 'grass']])
>>> reshape_cluster_array_to_dict (cluster_array) == \
{'grass': [{'x': 1, 'y': 1, 'value': 0}1],
'cow': [{'x': O, 'y': 1, 'value': 0},

C {'x': 1, 'y': 0, 'value': 0}]}
True

lib5c.algorithms.clustering.valley module

Module for splitting clusters using a valley heuristic.

40 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.clustering.valley.split_cluster (parent_cluster, guides, reas-
sign=1.0)
Splits a cluster using the valley heuristic.

Parameters
* parent_cluster (cluster) - The cluster to split.

* guides (list of clusters) — The guides used to seed the child clusters. See
lib5c.algorithms.clustering.valley.split_clusters{().

* reassign (float between 0.0 and 1.0)- When a cluster is split, the peaks in
the parent cluster with pvalues above this threshold may be discarded instead of being as-
signed to one or the other of the child clusters. When the value of this kwarg is 1.0, no peaks
are discarded and all peaks are reassigned to one or the other of the child clusters. When the
value of this kwarg is 0.0, all peaks are discarded and no peaks are reassigned to the child
clusters.

Returns The child clusters of the parent cluster.

Return type list of clusters

Notes

See 1ib5c.algorithms.clustering.valley.split_clusters().

lib5c.algorithms.clustering.valley.split_clusters (clusters, reassign=1.0,

size_threshold=3)
Splits all clusters in a list of clusters using a recursive valley-splitting heuristic.

Parameters
* clusters (list of clusters)— The list of clusters to split.

* reassign (float between 0.0 and 1.0)- When a cluster is split, the peaks in
the parent cluster with pvalues above this threshold may be discarded instead of being as-
signed to one or the other of the child clusters. When the value of this kwarg is 1.0, no peaks
are discarded and all peaks are reassigned to one or the other of the child clusters. When the
value of this kwarg is 0.0, all peaks are discarded and no peaks are reassigned to the child
clusters.

* size_threshold (int) — The minimum size of child clusters that will be created by
the splitting. If a splitting operation would result in clusters smaller than this number, that
splitting operation will not be performed.

Returns The split clusters.

Return type list of clusters

Notes
A cluster will get split if there exists a p-value such that thresholding the cluster at that p-value results in the
creation of at least two contiguous groups of high-confidence peaks (p-value below the threshold) larger than

the size_threshold separated by a “valley” of low-confidence peaks (p-value above the threshold). This
rule is applied recursively until only unsplittable, or “atomic”, clusters remain.

Module contents

Subpackage for clustering 5C interactions.

6.1. lib5c package a



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.filtering package
Submodules
lib5c.algorithms.filtering.bin_bin_filtering module

Module for smoothing bin-level 5C interaction matrices.

lib5c.algorithms.filtering.bin_bin_filtering.bin_bin_filter (array, fil-
ter_function, re-
gional_pixelmap,
threshold, fil-

ter_kwargs=None)
Convenience function for filtering a bin-level matrix to a bin-level matrix.

Parameters
* array (np.ndarray) — The matrix to filter.

e filter function (Callable[[List[Dict[str, Any]]], float]) — The
filter function to use when filtering. This function should take in a “neighborhood” and
return the filtered value given that neighborhood. A neighborhood is represented as a list of
“nearby points” where each nearby point is represented as a dict of the following form:

{
'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist’ and ‘y_dist’ are its distances from the
center of the neighborhood along the x- and y-axis, respectively, in base pairs. See 1ib5c.
algorithms.filtering.filter_functions for examples of filter functions and
how they can be created.

* regional_pixelmap (List [Dict[str, Any]])- The list of bins in this region.

* threshold (int) - The threshold for defining the size of the neighborhood passed to the
filter function, in base pairs.

* filter_ kwargs (Optional [Dict[str, Any]]) — Kwargs to be passed to the
filter_function.

Returns The filtered matrix.
Return type np.ndarray

lib5c.algorithms.filtering.bin_bin_filtering.bin_bin_filter_counts (counts,
function,
pixelmap,
threshold,
func-

tion_kwargs=None)
Non-parallel wrapper for bin_bin_filter (). Deprecated now that bin_bin_filter () is decorated

with @parallelize_regions.
Parameters

e counts (Dict [str, np.ndarray])- The counts dict to filter.

42 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

e function (Callable[[List[Dict[str, Any]]], float]) - The filter func-
tion to use for filtering. See the description of the filter_function arg in
bin_bin_filter().

* pixelmap (Dict[str, List[Dict[str, Any]]]) — The pixelmap describing
the bins for counts.

* threshold (int) — The threshold for defining the size of the neighborhood passed to the
filter function, in base pairs.

* function_kwargs (Optional[Dict[str, Any]])—- Kwargs to be passed to the
function.

Returns The dict of filtered counts.

Return type Dict[str, np.ndarray]

lib5c.algorithms.filtering.bin_bin_filtering.find nearby bins (index, re-
gional_pixelmap,
threshold)

Finds the bins near a target bin as specified by an index.
Parameters
e index (int) — The index of the bin to look near.
* regional_pixelmap (List [Dict [str, Any]])— The list of bins in this region.

* threshold (int)— The threshold for deciding if a bin is “nearby” or not, as a distance in
base pairs.

Returns

A list of nearby bins, where each nearby bin is represented as a dict of the following form:

{
'index': int,
'distance': int

where ‘index’ is the index of the bin within the region and ‘distance’ is the distance between this
bin and the target bin.

Return type List[Dict[str, int]]

lib5c.algorithms.filtering.filter_functions module

Module providing utilities for defining and constructing filter functions.

lib5c.algorithms.filtering.filter_functions.amean_gaussian (sigma=1000.0,
norm_ord=1,

check_threshold=0.2)
Constructs a filter function that uses the arithmetic mean with Gaussian weights as the aggregating function and

a p-norm as the norm function.
Parameters
* sigma (float)— The standard deviation to use for the Gaussian when assigning weights.

* norm_ord (int) — The order of the p-norm to use to convert (x-dist, y-dist) vectors to
scalar distances.

6.1. lib5c package 43



lib5¢c Documentation, Release 0.6.1

* check_threshold (float) —If less than this fraction of the values in a neighborhood
are positive, the filter function will return NaN.

Returns

The constructed filter function. This function takes in a “neighborhood” and returns the filtered
value given that neighborhood. A neighborhood is represented as a list of “nearby points” where
each nearby point is represented as a dict of the following form:

{
'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist” and ‘y_dist’ are its distances from the center
of the neighborhood along the x- and y-axis, respectively, in base pairs.

Return type Callable[[List[Dict[str, Any]]], float]

lib5c.algorithms.filtering.filter_functions.amean_inverse (bin_width=4000,
norm_ord=1,

) ) ) ) ) ) check_threshold=0.2)
Constructs a filter function that uses the arithmetic mean with “inverse” weights as the aggregating function and

a p-norm as the norm function.
Parameters
* bin_width (int) — The bin width in base pairs.

* norm_ord (int) — The order of the p-norm to use to convert (x-dist, y-dist) vectors to
scalar distances.

* check_threshold (float) — If less than this fraction of the values in a neighborhood
are positive, the filter function will return NaN.

Returns

The constructed filter function. This function takes in a “neighborhood” and returns the filtered
value given that neighborhood. A neighborhood is represented as a list of “nearby points” where
each nearby point is represented as a dict of the following form:

{
'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist’ and ‘y_dist’ are its distances from the center
of the neighborhood along the x- and y-axis, respectively, in base pairs.

Return type Callable[[List[Dict[str, Any]]], float]

lib5c.algorithms.filtering.filter_functions.arithmetic_mean (check_threshold=0.2)
Constructs a filter function that uses the unweighted arithmetic mean as the aggregating function.

Parameters check_threshold (float) — If less than this fraction of the values in a neighbor-
hood are positive, the filter function will return NaN.

Returns

44 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

The constructed filter function. This function takes in a “neighborhood” and returns the filtered
value given that neighborhood. A neighborhood is represented as a list of “nearby points” where
each nearby point is represented as a dict of the following form:

{

'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist’ and ‘y_dist’ are its distances from the center
of the neighborhood along the x- and y-axis, respectively, in base pairs.

Return type Callable[[List[Dict[str, Any]]], float]

lib5c.algorithms.filtering.filter_functions.check_neighboorhood_nonnan (neighborhood,
thresh-

old)
Check to see if a neighborhood clears as specified non-nan fraction threshold.

Parameters

* neighborhood (List [Dict [str, Any]])— A list of “nearby points” where each
nearby point is represented as a dict of the following form:

{

'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist’ and ‘y_dist’ are its distances from the
center of the neighborhood along the x- and y-axis, respectively, in base pairs.

* threshold (float) — If less than this fraction of the values in the neighborhood are
non-infinite, the neighborhood fails the check.

Returns True if this neighborhood clears the threshold, otherwise False.

Return type bool

lib5c.algorithms.filtering.filter_functions.check neighboorhood_positive (neighborhood,
thresh-

old)
Check to see if a neighborhood clears as specified positive fraction threshold.

Parameters

* neighborhood (List [Dict [str, Any]])— A list of “nearby points” where each
nearby point is represented as a dict of the following form:

{

'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist’ and ‘y_dist’ are its distances from the
center of the neighborhood along the x- and y-axis, respectively, in base pairs.

* threshold (float) — If less than this fraction of the values in the neighborhood are
positive, the neighborhood fails the check.

6.1. lib5c package 45



lib5¢c Documentation, Release 0.6.1

Returns True if this neighborhood clears the threshold, otherwise False.
Return type bool

lib5c.algorithms.filtering.filter_functions.geometric_mean (check_threshold=0.2)
Constructs a filter function that uses the unweighted geometric mean as the aggregating function.

Parameters check_threshold (float) - If less than this fraction of the values in a neighbor-
hood are positive, the filter function will return NaN.

Returns

The constructed filter function. This function takes in a “neighborhood” and returns the filtered
value given that neighborhood. A neighborhood is represented as a list of “nearby points” where
each nearby point is represented as a dict of the following form:

{
'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist” and ‘y_dist’ are its distances from the center
of the neighborhood along the x- and y-axis, respectively, in base pairs.

Return type Callable[[List[Dict[str, Any]]], float]

lib5c.algorithms.filtering.filter_functions.gmean_gaussian (sigma=1000.0,
norm_ord=1,

) ) ) ) ) check_threshold=0.2)
Constructs a filter function that uses the geometric mean with Gaussian weights as the aggregating function and

a p-norm as the norm function.
Parameters
* sigma (float)— The standard deviation to use for the Gaussian when assigning weights.

* norm_ord (int) — The order of the p-norm to use to convert (x-dist, y-dist) vectors to
scalar distances.

* check_threshold (float) - If less than this fraction of the values in a neighborhood
are positive, the filter function will return NaN.

Returns

The constructed filter function. This function takes in a “neighborhood” and returns the filtered
value given that neighborhood. A neighborhood is represented as a list of “nearby points” where
each nearby point is represented as a dict of the following form:

{
'value': float,
'x_dist': int,
'yv_dist': int

where ‘value’ is the value at the point and ‘x_dist’ and ‘y_dist’ are its distances from the center
of the neighborhood along the x- and y-axis, respectively, in base pairs.

Return type Callable[[List[Dict[str, Any]]], float]

lib5c.algorithms.filtering.filter_functions.gmean_inverse (bin_width=4000,
norm_ord=1,
check_threshold=0.2)

46 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Constructs a filter function that uses the geometric mean with “inverse” weights as the aggregating function and
a p-norm as the norm function.

Parameters
* bin_width (int) — The bin width in base pairs.

* norm_ord (int) — The order of the p-norm to use to convert (x-dist, y-dist) vectors to
scalar distances.

* check_threshold (float) - If less than this fraction of the values in a neighborhood
are positive, the filter function will return NaN.

Returns

The constructed filter function. This function takes in a “neighborhood” and returns the filtered
value given that neighborhood. A neighborhood is represented as a list of “nearby points” where
each nearby point is represented as a dict of the following form:

{
'value': float,
'x_dist': int,
'yv_dist': int

where ‘value’ is the value at the point and ‘x_dist’ and ‘y_dist’ are its distances from the center
of the neighborhood along the x- and y-axis, respectively, in base pairs.

Return type Callable[[List[Dict[str, Any]]], float]

lib5c.algorithms.filtering.filter_functions.inverse_weighting_ function (distance,
) o ) ) bin_width=None)
The “inverse” weighting function used in Yaffe and Tanay 2011.
Parameters
* distance (float) - The distance to compute a weight for, in base pairs.

* bin_width (Optional[int]) — The bin width in base pairs. Used to make results
equivalent to Yaffe and Tanay 2011 by scaling distance to units of bins. Pass None to
simply leave the distance in units of base pairs

Returns A weight appropriate for this distance.
Return type float

lib5c.algorithms.filtering.filter_functions.make_filter_function (function="gmean’,
thresh-
old=0.0,
norm_order=1,
bin_width=4000,
sigma=12000.0,
in-
verse=False,
gaus-

. . . . . o _ sian=False)
Convenience function for quickly constructing filtering functions with desired properties.

Parameters

* function({'sum', 'median', 'amean', 'gmean'})-The aggregation func-
tion to use. This is the operation that will be applied to all points in the neighborhood, after
weighting their values if appropriate.

6.1. lib5c package a7



lib5¢c Documentation, Release 0.6.1

* threshold (float) —If less than this fraction of the values in a neighborhood are non-
infinite, the filter function will return nan for that neighborhood.

* norm_order (int)— The order of p-norm to use when computing distances.

* bin_width (int) - The width of each bin in base pairs. This value is used to scale certain
weights.

* sigma (float)— The value to use for the standard deviation of the Gaussian when using
Gaussian weights.

* inverse (bool) — Pass True to use “inverse” weights as in Yaffe and Tanay 2011.
* gaussian (bool) — Pass True to use Gaussian weights with standard deviation sigma.
Returns

The constructed filter function. This function takes in a “neighborhood” and returns the filtered
value given that neighborhood. A neighborhood is represented as a list of “nearby points” where
each nearby point is represented as a dict of the following form:

{
'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist” and ‘y_dist’ are its distances from the center
of the neighborhood along the x- and y-axis, respectively, in base pairs.

Return type Callable[[List[Dict[str, Any]]], float]

lib5c.algorithms.filtering.filter_functions.median (check_threshold=0.2)

Constructs a filter function that uses the median as the aggregating function.

Parameters check_threshold (float) —If less than this fraction of the values in a neighbor-
hood are positive, the filter function will return NaN.

Returns

The constructed filter function. This function takes in a “neighborhood” and returns the filtered
value given that neighborhood. A neighborhood is represented as a list of “nearby points” where
each nearby point is represented as a dict of the following form:

{
'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist” and ‘y_dist’ are its distances from the center
of the neighborhood along the x- and y-axis, respectively, in base pairs.

Return type Callable[[List[Dict[str, Any]]], float]

lib5c.algorithms.filtering.filter_functions.norm filter_function (weighted_function,

norm_function,
weighted_kwargs=None,
norm_kwargs=None,
pseudo-

count=0,
check_function=None,
check_threshold=None)

48

Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Constructs a filter function that passes the value and some distance norm (as specified by norm_function)
for each point in the neighborhood to a special aggregation function capable of performing weighted aggregation
based on these distances.

Parameters

* weighted_function (Callable[[List[Dict[str, float]], float]) —
A special aggregation function that takes in a list of points represented as dicts with the
following structure:

{
'value': float,
'dist': float

where ‘value’ is the interaction value at that point and ‘dist’ is its scalar distance from the
neighborhood. This function should then return a float representing the aggregate value of
the neighborhood, weighted using the distances.

e norm_function (Callable[[Tuple[int]], float])— A function that takes in
a tuple of ints representing the x- and y-axis distances of a point to the neighborhood and
returns a scalar value representing the distance.

» weighted_kwargs (Optional [Dict[str, Any]]) — Kwargs to be passed to
weighted_function.

* norm_kwargs (Optional [Dict[str, Any]]) — Kwargs to be passed to
norm_function.

* pseudocount (float)— A pseudocount to be added to the values before applying the
aggregation function. Useful if the aggregation function has catastrophic behavior when one
input value is zero.

e check_function (Optional([Callable[[List[Dict[str, Any]],
float], bool]])— A function that takes in a neighborhood and a threshold value and
performs some sort of test on the neighborhood, returning False if the filter function should
return NaN for the neighborhood because it fails some critical condition.

* check_threshold (float) — The threshold to pass as the second arg to
check_function.

Returns

The constructed filter function. This function takes in a “neighborhood” and returns the filtered
value given that neighborhood. A neighborhood is represented as a list of “nearby points” where
each nearby point is represented as a dict of the following form:

{
'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist” and ‘y_dist’ are its distances from the center
of the neighborhood along the x- and y-axis, respectively, in base pairs.

Return type Callable[[List[Dict[str, Any]]], float]

lib5c.algorithms.filtering.filter_functions.simple_sum (check_threshold=0.2)
Constructs a filter function that uses a simple sum as the aggregating function.

6.1. lib5c package 49



lib5¢c Documentation, Release 0.6.1

Parameters check_threshold (float) - If less than this fraction of the values in a neighbor-
hood are positive, the filter function will return NaN.

Returns

The constructed filter function. This function takes in a “neighborhood” and returns the filtered
value given that neighborhood. A neighborhood is represented as a list of “nearby points” where
each nearby point is represented as a dict of the following form:

{

'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist” and ‘y_dist’ are its distances from the center
of the neighborhood along the x- and y-axis, respectively, in base pairs.

Return type Callable[[List[Dict[str, Any]]], float]

lib5c.algorithms.filtering.filter_functions.value_filter_function (function,

Sfunc-

tion_kwargs=None,

pseudo-
count=0,

check_function=None,
check_threshold=None)

Constructs a filter function that passes the values in the neighborhood to an aggregation function.

Parameters

Returns

function (Callable[Sequence[float], float])— The aggregation function
to use on the values in each neighborhood.

function_kwargs (Optional [Dict[str, Any]]) — Kwargs to be passed to
function.

pseudocount (float)— A pseudocount to be added to the values before applying the
aggregation function. Useful if the aggregation function has catastrophic behavior when one
input value is zero.

check function (Optional[Callable[[List[Dict[str, Any]],
float], bool]])— A function that takes in a neighborhood and a threshold value and
performs some sort of test on the neighborhood, returning False if the filter function should
return NaN for the neighborhood because it fails some critical condition.

check threshold (float) — The threshold to pass as the second arg to
check_function.

The constructed filter function. This function takes in a “neighborhood” and returns the filtered
value given that neighborhood. A neighborhood is represented as a list of “nearby points” where
each nearby point is represented as a dict of the following form:

{

'value': float,
'x_dist': int,
'y_dist': int

50

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

where ‘value’ is the value at the point and ‘x_dist’ and ‘y_dist’ are its distances from the center
of the neighborhood along the x- and y-axis, respectively, in base pairs.

Return type Callable[[List[Dict[str, Any]]], float]

lib5c.algorithms.filtering.filter_functions.weighted_amean (values, weights)
Weighted version of the arithmetic mean.

Parameters

* values (Sequence [float]) - The values to aggregate.

* weights (Sequence [float]) - The weights for each value.
Returns The weighted arithmetic mean of the values given the weights.
Return type float

lib5c.algorithms.filtering.filter_functions.weighted_ gmean (values, weights)
Weighted version of the geometric mean.

Parameters

* values (Sequence [float])— The values to aggregate.

* weights (Sequence [float]) - The weights for each value.
Returns The weighted geometric mean of the values given the weights.
Return type float

lib5c.algorithms.filtering.filter_functions.weighted_values_distances_function (weighting_functi
ag-
gre-
gat-
ing_function,
weight-
ing_kwargs=Nor
ag-
gre-
gat-
ing_kwargs=Nor
cache=True)

Constructs a weighted aggregation function appropriate for use with norm_filter_function ().
Parameters

*» weighting_ function (Callable[[float], float])— A function that takes in
a distance and returns a weight.

* aggregating function (Callable[[Sequence[float],
Sequence[float]], float]) — A special aggregating function that takes in
the values and the weights as parallel vectors and returns the aggregated value.

* weighting kwargs (Optional [Dict[str, Any]]) — Kwargs to be passed to
weighting_ function.

* aggregating_kwargs (Optional [Dict [str, Any]])- Kwargs to be passed to
aggregating_function.

* cache (bool)— Pass True to make the returned function use a cache to avoid recomputing
expensive weighting function calls.

6.1. lib5c package 51



lib5¢c Documentation, Release 0.6.1

Returns

A special aggregation function that takes in a list of points represented as dicts with the following
structure:

{

'value': float,
'dist': float

where ‘value’ is the interaction value at that point and ‘dist’ is its scalar distance from the neigh-
borhood. This function returns a float representing the aggregate value of the neighborhood,
weighted using the distances.

Return type Callable[[List[Dict[str, float]], float]

lib5c.algorithms.filtering.fragment_bin_filtering module

lib5c.algorithms.filtering.fragment_kbin_filtering.find_nearby_ fragments (index,

re-
gional_pixelmap,

re-

gional_primermap,

up-
Stream_primer_mapping,
thresh-

old,

mid-

point=False)

Finds the primers near a target bin as specified by an index.

Parameters

Returns

index (int) — The index of the bin to look near.

regional_pixelmap (List [Dict[str, Any]]) — The pixelmap describing the
bins for this region.

regional primermap (List[Dict[str, Any]]) — The primermap describing
the primers for this region.

upstream primer_mapping (Dict[int, int])— A mapping from each binindex
to the index of its nearest upstream primer. See 1ib5c.algorithms.filtering.
fragment_bin_filtering .find_upstream_primers().

threshold (int) — The threshold for deciding if a fragment is “nearby” or not, as a
distance in base pairs.

midpoint (bool) — Pass True to restore legacy behavior when distances to fragments
were based on their midpoints. The new behavior (with this kwarg set to False) is to compute
distances to fragments based on their closest endpoint.

A list of nearby fragments, where each nearby fragment is represented as a dict of the following
form:

52

Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

'index': int,
'distance': int

where ‘index’ is the index of the fragment within the region and ‘distance’ is the distance be-
tween this fragment and the target bin.

Return type List[Dict[str, int]]

lib5c.algorithms.filtering.fragment_bin_filtering.find_upstream_primers (regional_pixelmap,
re-
gional_primermap)
Creates a mapping from a bin index to the index of its nearest upstream primer.

Parameters

* regional_pixelmap (List [Dict[str, Any]])— The pixelmap describing the
bins for this region.

* regional_primermap (List[Dict[str, Any]]) — The primermap describing
the primers for this region.

Returns A map from each bin index to the index of its nearest upstream primer.
Return type Dict[int, int]

lib5c.algorithms.filtering.fragment_bin_filtering.fragment_bin filter (array,
fil-
ter_function,
re-
gional_pixelmap,
re-
gional_primermap,
thresh-
old,
fil-
ter_kwargs=None,
mid-
point=False)

Convenience function for filtering a fragment-level matrix to a bin-level matrix.

Parameters
e array (np.ndarray) — The matrix to filter.

e filter function (Callable[[List[Dict[str, Any]]], float]) — The
filter function to use when filtering. This function should take in a “neighborhood” and
return the filtered value given that neighborhood. A neighborhood is represented as a list of
“nearby points” where each nearby point is represented as a dict of the following form:

{
'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist” and ‘y_dist’ are its distances from the
center of the neighborhood along the x- and y-axis, respectively, in base pairs. See 1ib5c.

6.1. lib5c package 53



lib5¢c Documentation, Release 0.6.1

algorithms.filtering.filter_functions for examples of filter functions and
how they can be created.

regional pixelmap (List [Dict[str, Any]]) — The pixelmap describing the
bins for this region.

regional_primermap (List [Dict[str, Any]]) — The primermap describing
the primers for this region.

threshold (int) — The threshold for defining the size of the neighborhood passed to the
filter function, in base pairs.

filter_kwargs (Optional[Dict[str, Any]]) — Kwargs to be passed to the
filter function.

midpoint (bool) — Pass True to restore legacy behavior when distances to fragments
were based on their midpoints. The new behavior (with this kwarg set to False) is to compute
distances to fragments based on their closest endpoint.

Returns The filtered matrix.

Return type np.ndarray

lib5c.algorithms.filtering.fragment_bin_filtering.fragment_bin_ filter_ counts (counts,

func-

tion,

pix-

elmap,
primermap,
thresh-

old,

func-
tion_kwargs=None,
mid-
point=False)

Non-parallel wrapper for fragment_bin_filter (). Deprecated now that fragment_bin_filter ()
is decorated with @parallelize_regions.

Parameters

counts (Dict [str, np.ndarray])- The counts dict to filter.

function (Callable[[List [Dict[str, Any]]], float]) - The filter func-
tion to use for filtering. See the description of the filter_function arg in
fragment_bin_filter ().

pixelmap (Dict[str, List[Dict[str, Any]]]) — The pixelmap describing
the bins.

primermap (Dict [str, List[Dict[str, Any]]])-The primermap describing
the fragments.

threshold (int) — The threshold for defining the size of the neighborhood passed to the
filter function, in base pairs.

function_kwargs (Optional [Dict [str, Any]])— Kwargs to be passed to the
function.

midpoint (bool) — Pass True to restore legacy behavior when distances to fragments
were based on their midpoints. The new behavior (with this kwarg set to False) is to compute
distances to fragments based on their closest endpoint.

Returns The dict of filtered counts.

54

Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Return type Dict[str, np.ndarray]

lib5c.algorithms.filtering.fragment_fragment_filtering module

Module for smoothing fragment-level 5C interaction matrices.

lib5c.algorithms.filtering.fragment_fragment_filtering.find nearby_ fragments (index,
re-
gional_primermap,
thresh-
old,
mid-
point=False)

Finds the fragments near a target fragment as specified by an index.

Parameters
¢ index (int)— The index of the bin to look near.

* regional_primermap (List [Dict[str, Any]])— The list of fragments in this
region.

* threshold (int) — The threshold for deciding if a fragment is “nearby” or not, as a
distance in base pairs.

* midpoint (bool) — Pass True to restore legacy behavior when distances to fragments
were based on their midpoints. The new behavior (with this kwarg set to False) is to compute
distances to fragments based on their closest endpoint.

Returns

A list of nearby fragments, where each nearby bin is represented as a dict of the following form:

{
'index': int,
'distance': int

where ‘index’ is the index of the fragment within the region and ‘distance’ is the distance be-
tween this fragment and the target fragment.

Return type List[Dict[str, int]]

lib5c.algorithms.filtering. fragment_fragment_filtering.fragment_fragment_filter (array,
Jil-
ter_function,
re-
gional_primern
thresh-
old,
Jil-
ter_kwargs=No¢
mid-
point=False)

Convenience function for filtering a fragment-level matrix to a fragment-level matrix.

Parameters

e array (np.ndarray) — The matrix to filter.

6.1. lib5c package 55



lib5¢c Documentation, Release 0.6.1

e filter function (Callable[[List[Dict[str, Any]]], float]) — The

filter function to use when filtering. This function should take in a “neighborhood” and
return the filtered value given that neighborhood. A neighborhood is represented as a list of
“nearby points” where each nearby point is represented as a dict of the following form:

{
'value': float,
'x_dist': int,
'y_dist': int

where ‘value’ is the value at the point and ‘x_dist” and ‘y_dist’ are its distances from the
center of the neighborhood along the x- and y-axis, respectively, in base pairs. See 1ib5c.
algorithms.filtering.filter_functions for examples of filter functions and
how they can be created.

regional_primermap (List [Dict[str, Any]])— The list of fragments in this
region.
threshold (int) — The threshold for defining the size of the neighborhood passed to the

filter function, in base pairs.

filter_kwargs (Optional [Dict[str, Any]]) — Kwargs to be passed to the
filter_ function.

midpoint (bool) — Pass True to restore legacy behavior when distances to fragments
were based on their midpoints. The new behavior (with this kwarg set to False) is to compute
distances to fragments based on their closest endpoint.

Returns The filtered matrix.

Return type np.ndarray

lib5c.algorithms.filtering.fragment_fragment_filtering.fragment_ fragment_ filter_counts (coun

Non-parallel

wrapper for fragment_fragment_filter (). Deprecated  now

fragment_fragment_filter () is decorated with @parallelize_regions.

Parameters

e counts (Dict [str, np.ndarray])- The counts dict to filter.

e function (Callable[[List[Dict[str, Any]]], float])- The filter func-

tion to use for filtering. See the description of the filter_ function arg in
fragment_fragment_filter().

* primermap (Dict [str, List[Dict[str, Any]]])-The primermap describing

the fragments for counts.

* threshold (int) — The threshold for defining the size of the neighborhood passed to the

filter function, in base pairs.

56

Chapter 6. lib5c

Sfunc-
tion,
prim
thres
old,

Sunc-
tion_
mid-
point



lib5¢c Documentation, Release 0.6.1

* function_kwargs (Optional [Dict[str, Any]])— Kwargs to be passed to the
function.

* midpoint (bool) — Pass True to restore legacy behavior when distances to fragments
were based on their midpoints. The new behavior (with this kwarg set to False) is to compute
distances to fragments based on their closest endpoint.

Returns The dict of filtered counts.

Return type Dict[str, np.ndarray]

lib5c.algorithms.filtering.unsmoothable_columns module

Module for identifying “unsmoothable columns” - sets of bins that don’t contain any non-zero fragments and are too
wide to smooth over.
lib5c.algorithms.filtering.unsmoothable_columns.find_prebinned unsmoothable_columns (regional_
re-
gional_pi
win-
dow_widi
Identifies the unsmoothable columns in a region assuming that the smoothing was a filtering operation applied
on data that was already bin-level.

Parameters
* regional_counts (np.ndarray)— The matrix of counts for this region.

* regional_pixelmap (List [Dict[str, Any]]) - The pixelmap describing the
bins for this region.

* window_width (int) - The width of the filtering window in base pairs.

Returns A list of boolean values with length equal to the number of bins in the region. The i th
element of this list is True if the i th bin in the region is an “unsmoothable column”.

Return type List[bool]

lib5c.algorithms.filtering.unsmoothable_columns.find_unsmoothable_columns (regional_primermap,
re-

gional_pixelmap,

win-

dow_width,

up-
Stream_primer_mapping
mid-

point=False)

Identifies the unsmoothable columns in a region assuming that the smoothing was a filtering operation applied
on fragment-level data.

Parameters

* regional_primermap (List[Dict[str, Any]]) — The primermap describing
the primers for this region.

* regional_pixelmap (List [Dict[str, Any]])— The pixelmap describing the
bins for this region.

* window_width (int) — The width of the filtering window in base pairs.

6.1. lib5c package 57



lib5¢c Documentation, Release 0.6.1

* upstream primer_mapping (Dict[int, int])— A mapping from each binindex
to the index of its nearest upstream primer. See 1ib5c.algorithms.filtering.
fragment_bin_filtering .find_upstream_primers ().

* midpoint (bool) — Pass True to restore legacy behavior when distances to fragments
were based on their midpoints. The new behavior (with this kwarg set to False) is to compute
distances to fragments based on their closest endpoint.

Returns A list of boolean values with length equal to the number of bins in the region. The i th
element of this list is True if the i th bin in the region is an “unsmoothable column”.

Return type List[bool]

lib5c.algorithms.filtering.unsmoothable_columns.unsmoothable_column_threshold_heuristic (win

bin
This function defines the heuristic that determines how long a run of fragment-less bins must be before it is
considered “unsmoothable”.

Parameters

* window_width (int)— The width of the filtering window in base pairs.
* bin_step (int) — The “sampling rate” or “bin step”.

Returns The maximum length of a run of fragment-less bins must be before it is considered “un-
smoothable”.

Return type int

lib5c.algorithms.filtering.unsmoothable_columns.wipe_prebinned_unsmoothable_columns (smoothed
pre-
binned_c:
pix-
elmap,
win-

dow_widi
Convenience function for wiping the unsmoothable columns in a binned counts matrix assuming that the smooth-

ing was a filtering operation applied on bin-level data.

Parameters

* smoothed_counts (np.ndarray) — The matrix of smoothed counts to wipe un-
smoothable columns from.

* prebinned_counts (np.ndarray)— The original binned counts matrix to use to iden-
tify zero-count columns.

* pixelmap (List[Dict[str, Any]])— The pixelmap describing the bins for this
region.

* window_width (int)— The width of the filtering window in base pairs.
Returns The wiped matrix of binned counts.

Return type np.ndarray

lib5c.algorithms.filtering.unsmoothable_columns.wipe_unsmoothable_columns (binned_counts,
primermap,
pix-
elmap,
win-
dow_width,
mid-
point=False)

58 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Convenience function for wiping the unsmoothable columns in a binned counts matrix assuming that the smooth-

ing was a filtering operation applied on fragment-level data.
Parameters

* binned_counts (np.ndarray) — The matrix of binned counts to wipe unsmoothable
columns from.

* primermap (List [Dict[str, Any]])—- The primermap describing the primers for
this region.

* pixelmap (List [Dict[str, Any]]) — The pixelmap describing the bins for this
region.

* window_width (int)— The width of the filtering window in base pairs.

* midpoint (bool) — Pass True to restore legacy behavior when distances to fragments
were based on their midpoints. The new behavior (with this kwarg set to False) is to compute
distances to fragments based on their closest endpoint.

Returns The wiped matrix of binned counts.

Return type np.ndarray

lib5c.algorithms.filtering.util module

Module containing utility functions for filtering 5C interaction matrices.

lib5c.algorithms.filtering.util.filter_selector (array, nearby_x, nearby_y)

Create a list of dicts that describes the “neighborhood” around a point given an array of values and lists of the

nearby entities along both the x- and y-axes.
Parameters
* array (np.ndarray)— The array of values at each point in the region.

* nearby_y (nearby_x,) — A list of nearby entities (bins or fragments) along the x- or
y-axis, respectively, represented as dicts of the form:

{
'index': int,
'distance': int

where ‘index’ is the index of the entity within the region, and ‘distance’ is the distance from
this entity to the query point in base pairs. A list of this form can be created by functions
like find_nearby_bins () or find_nearby_fragments ().

Module contents

CEINTS

Subpackage for “smoothing”, “binning”, or “filtering” SC contact frequencies.

lib5c.algorithms.variance package

Submodules

6.1. lib5c package

59



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.variance.combined module

lib5c.algorithms.variance.combined.cross_rep_plus_deviation_variance (obs,
exp,
rep,
model="lognorm’,
min_disp=1e-
08)
Estimates pixel-wise variance as the squared deviation between observed and expected values.

Parameters

* obs (dict or list of np.ndarray) — Dict values or list entries are are square,
symmetric count matrices across replicates.

* exp (np.ndarray)— Square, symmetric matrix of expected values.

* rep(int or str)-Theindex into obs identifying which replicate to compute variance
estimates for.

* model ({'lognorm', 'norm'})— Statistical model to use.
* min_disp (float)— Force a minimum value of the dispersion parameter.

Returns The first three elements are the mean parameter estimate, dispersion estimate, and variance
estimate, respectively, for each pixel. The fourth element is a boolean matrix showing which
pixels are considered to be overdispersed.

Return type tuple of np.ndarray

lib5c.algorithms.variance.cross_rep module

lib5c.algorithms.variance.cross_rep.cross_rep_variance (obs, model="lognorm’,
min_disp=1e-08,
) ) ) ) ) method="mme’)
Estimates pixel-wise variance across replicates.

Parameters

* obs (dict or list of np.ndarray) — Dict values or list entries are are square,
symmetric count matrices across replicates.

* model ({'lognorm', 'nbinom', 'norm'})- Statistical model to use.
* min_disp (float)— Force a minimum value of the dispersion parameter.

* method ({ 'mme’, 'mle'})—Whenmodel="nbinom’, pass ‘mle’ to run maximum like-
lihood estimation for each pixel independently. Pass ‘mme’ to use method-of-moments
variance estimation. Has no effect if model="lognorm’.

Returns The first three elements are the mean parameter estimate, dispersion estimate, and variance
estimate, respectively, for each pixel. The fourth element is a boolean matrix showing which
pixels are considered to be overdispersed.

Return type tuple of np.ndarray

60 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.variance.deviation module

lib5c.algorithms.variance.deviation.deviation_variance (obs, exp, model="lognorm’,
min_disp=1e-08)
Estimates pixel-wise variance as the squared deviation between observed and expected values.
Parameters
* exp (obs, ) — Square, symmetric matrix of observed and expected values, respectively.
e model ({ 'lognorm', 'nbinom', 'norm'})- Statistical model to use.

* min_disp (float)— Force a minimum value of the dispersion parameter.

Returns The first three elements are the mean parameter estimate, dispersion estimate, and variance
estimate, respectively, for each pixel. The fourth element is a boolean matrix showing which
pixels are considered to be overdispersed.

Return type tuple of np.ndarray

lib5c.algorithms.variance.estimate_variance module

lib5c.algorithms.variance.estimate_variance.estimate_variance (obs_counts,
exp_counts,
key_rep=None,
model="lognorm’,
source="deviation’,
source_kwargs=None,
fitter="lowess’,
fit-
ter_agg="lowess’,
fit-
ter_kwargs=None,
x_unit="dist’,
y_unit="disp’,
logx=False,
logy=False,
min_disp=1e-
08, min_obs=2,
min_dist=60,
regional=False)

Convenience function for computing variance estimates.

Parameters

* obs_counts (dict of np.ndarray or dict of dict of np.ndarray)
— Counts dict of observed values (keys are region names, values are square symmetric ma-
trices), or superdict (outer keys are replicate names, inner keys are region names, values are
square symmetric matrices) if source="'cross_rep".

* exp_counts (dict of np.ndarray) - Counts dict of expected values.

* key_rep (str)-1If obs_counts is a dict of dict of np.ndarray, pass a string naming the
specific replicate to compute variance estimates for.

e model ({'lognorm', 'loglogistic', 'nbinom', 'poisson'}) — Statisti-
cal model to use.

6.1. lib5c package 61



lib5¢c Documentation, Release 0.6.1

source ({'local', 'cross_rep', 'deviation', 'mle'}) — Specify the
source of the variance estimates.

* source_kwargs (dict)— Kwargs to pass through to the variance source function.

fitter ({'constant', 'group', 'lowess', 'none'}) - Select Mfitting
method to use for trend fitting. Pass ‘none’ to skip trend fitting and simply return unfil-
tered point-wise estimates.

fitter_agg({ 'median', 'mean', 'lowess'})-Iffitteris ‘group’ or ‘con-
stant’, select what function to use to aggregate values (within groups for group fitting or
across the whole dataset for constant fitting).

* fitter_ kwargs (dict)— Kwargs to pass through to the fitting function.
* x unit ({'dist', 'exp'})- The x-unit to fit the variance relationship against.

e y unit ({'disp’', 'var'})-The y-unitto fitthe variance relationship against. When
model="nbinom', “disp” refers to the negative binomial dispersion parameter. When
model="'lognorm', “disp” refers to the variance parameter of the normal distribution
describing the logarithm of the observed counts.

logy (1ogx,) — Pass True to fit the variance relationship on the scale of 1og (x) and/or
log(y).
* min_disp (float)—-Whenmodel="nbinom', this sets the minimum value of the neg-

ative binomial dispersion parameter. When model="'1lognormal ', this sets the minimum
value of the variance of logged observed counts.

* min_obs (float) - Points with observed values below this threshold in any replicate will
be excluded from MLE estimation and relationship fitting.

e min_dist (int)— Points with interaction distances (in bin units) below this threshold will
be excluded from MLE estimation and relationship fitting.

regional (bool) — Pass True to perform MLE estimation and relationship fitting on a
per-region basis.

Returns The variance estimates as a counts dict.

Return type dict of np.ndarray

lib5c.algorithms.variance.local module

lib5c.algorithms.variance.local.local_variance (matrix, model="lognorm’, w=1,
min_finite=3, min_disp=1e-08)
Estimates pixel-wise variance by treating nearby matrix entries as replicates.

Parameters
* matrix (np.ndarray) - Square, symmetric matrix of count values.
* model ({ 'lognorm', 'nbinom'}) - Statistical model to use.

* w (int or np.ndarray) — Size of footprint to use. Footprint will be np.
eye (2xw+1) . To use a different footprint, pass it as an np.ndarray.

* min_finite (int) - Points with fewer than this many finite entries inside their footprint
will have their variance estimate set to nan.

* min_disp (float)— Force a minimum value of the dispersion parameter.

62 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Returns The first three elements are the mean parameter estimate, dispersion estimate, and variance
estimate, respectively, for each pixel. The fourth element is a boolean matrix showing which
pixels are considered to be overdispersed.

Return type tuple of np.ndarray

Examples

>>> import numpy as np
>>> from lib5c.algorithms.variance.local import local_variance

True, False, Truel],
False, True, Falsel]))

>>> local_variance (np.array([[1, 4, 1],
(4, 1, 11,
[1, 1, 111), model="norm', min_finite=2)
(array ([[1. , 2.5, 1. 1,
(2.5, 1. , 2.5],
[1. , 2.5, 1. 11),
array ([[1.0e-08, 4.5e+00, nan],
[4.5e+00, 1.0e-08, 4.5e+00],
[ nan, 4.5e+00, 1.0e-08]1),
array ([[1.0e-08, 4.5e+00, nan],
[4.5e+00, 1.0e-08, 4.5e+00],
[ nan, 4.5e+00, 1.0e-08]1),
array ([ [False, True, False],
[
[

lib5c.algorithms.variance.lognorm_dispersion module

Module for estimating lognormal dispersion parameters for 5C interaction data.

lib5c.algorithms.variance.lognorm_dispersion.dispersion_to_variance (disp,

exp)
Converts a dispersion estimate to a variance by applying it to the expected value of unlogged counts.

Parameters
* disp (float or np.ndarray)- The dispersion (variance of logged values).
* exp (float or np.ndarray) - The expected value (of unlogged values).
Returns The variance.
Return type float or np.ndarray

lib5c.algorithms.variance.lognorm_dispersion.dispersion_to_variance_direct (disp,

mu)
Converts a dispersion estimate to a variance by applying it to the expected value of logged counts.

Parameters
* disp (float or np.ndarray)- The dispersion (variance of logged values).
* mu(float or np.ndarray)— The expected value (of logged values).
Returns The variance.
Return type float or np.ndarray

lib5c.algorithms.variance.lognorm_dispersion.variance_to_dispersion (var,

exp)
Converts a variance estimate to a dispersion by applying it to the expected value of unlogged counts.

6.1. lib5c package 63



lib5¢c Documentation, Release 0.6.1

Parameters

* var (float or np.ndarray)— The variance (of unlogged values).

* exp (float or np.ndarray) - The expected value (of unlogged values).
Returns The dispersion (variance of logged values).

Return type float or np.ndarray

lib5c.algorithms.variance.mle module

lib5c.algorithms.variance.mle.mle_variance (obs, exp, model="lognorm’, min_obs=2,
min_dist=6, regional=False)
Fits a single point estimate of the dispersion across each or all regions under the selected model, and returns the

converted variance estimates.
Parameters

* exp (obs,) — The counts dicts of observed and expected data. Keys are region names,
values are square, symmetric count matrices.

* model ({'lognorm', 'loglogistic', 'nbinom'}) - The statistical model to
use for MLE point estimation.

* min_obs (float) — Fit only points with at least this many observed counts.

* min_dist (int) - Fit only points with at least this interaction distance in bin units.

* regional (bool) — Pass True to fit a separate point estimate for each region.
Returns The variance estimates.

Return type dict of np.ndarray

lib5c.algorithms.variance.nbinom_dispersion module

Module for estimating negative binomial dispersion parameters for 5C interaction data.

lib5c.algorithms.variance.nbinom_dispersion.dispersion_to_variance (disp, exp)
Converts a dispersion estimate to a variance by applying it to the expected value via the relationship var =
exp + disp * expxx2.

Parameters

* disp(float or np.ndarray) - The dispersion.

* exp (float or np.ndarray) - The expected value.
Returns The variance.
Return type float or np.ndarray

lib5c.algorithms.variance.nbinom_dispersion.nb_nll (disp, obs, exp)
The negative log likelihood of observed data obs given mean/expected value exp and dispersion parameter
disp.

Parameters
* disp(float or np.ndarray)- The dispersion parameter.
e obs (int or np.ndarray)— The observed data.

* exp (float or np.ndarray) - The mean/expected value.

64 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Returns The negative log likelihood.

Return type float

lib5c.algorithms.variance.nbinom_dispersion.nb_nll_derivative (disp, obs)

Derivative of the negative binomial log-likelihood function with respect to the dispersion parameter, given ob-
served data.

This function is vectorized. Pass one dispersion and a vector of observed values to evaluate the derivative with
just that one dispersion on the collection of all the observed values passed. Pass a vector of dispersions and a
matrix of observed values to compute a vector of derivative evaluations, using the i th element of the dispersion
vector and the i th row of the observed matrix to compute the i th derivative evaluation.

Parameters
* disp(float or np.ndarray)- The negative binomial dispersion parameter.

* obs (np.ndarray) — The observed values. If disp is a vector, this should be a matrix
whose number of rows equals the length of disp.

Returns The derviative evaluation(s).

Return type float or np.ndarray

lib5c.algorithms.variance.nbinom_dispersion.nb_pmf (k, m, alpha)

The negative binomial PMF, parametrized in terms of a mean m and a dispersion alpha.
Parameters
* k(int or np.ndarray)- The observed value.
e m(float or np.ndarray)- The expected or mean value.
* alpha (float or np.ndarray)- The dispersion parameter.
Returns The value of the PMF.

Return type float or np.ndarray

libbc.algorithms.variance.nbinom dispersion.variance_to_dispersion (var, exp,

min_disp=None)
Converts a variance estimate to a dispersion estimate by reversing the relationship in

dispersion_to_variance (). Only defined for points where var > exp. If var is the sample
variance and exp is the sample mean, this is the equivalent to the method-of-moments estimate of the
dispersion parameter.

Parameters
e var (float or np.ndarray)- The variance.
* exp (float or np.ndarray) - The expected value.

e min_disp (float, optional)—Passa value to enter a lenient mode where underdis-
persed points will be allowed, but will not be assigned a dispersion value from the statistical
relationship. Underdispersed points will instead be assigned the min_disp value.

Returns The dispersion.

Return type float or np.ndarray

Module contents

Submodules

6.1. lib5c package

65



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.convergency module

Module containing functions for assisting in assessing the degree of convergency in orientation of transcription factors.

lib5c.algorithms.convergency.compute_convergency (loops, pixelmap, peaks, motifs,
loop_classes=(’constitutive’, ),
margin=0)

lib5c.algorithms.convergency.prepare_convergency_ annotations (pixelmap, peaks,
motifs)

lib5c.algorithms.correlation module

Module for computing correlations between SC replicates.

lib5c.algorithms.correlation.make_pairwise_correlation_matrix (counts_superdict,
correla-
tion="pearson’,
rep_order=None)
Computes a matrix of pairwise correlation coefficients among a set of 5C replicates.

Parameters

* counts_superdict (Dict[str, Dict[str, np.ndarray]]) — The keys to
the outer dict are replicate names as strings. The values are standard “counts dicts” whose
keys are region names as strings and whose values are square symmetric matrices of counts.

* correlation ({ 'pearson’', 'spearman'}) - Controls which correlation will be
used.

* rep_order (Optional [List [str]])— Pass a list of strings to specify the order of
the replicates in the rows and columns of the returned correlation matrix. If this kwarg is
omitted the columns and rows of the returned correlation matrix will be arranged in the
iteration order of the keys of counts_superdict.

Returns The square, symmetric pairwise correlation matrix.
Return type np.ndarray

lib5c.algorithms.correlation.make_pairwise_correlation matrix from_ counts_matrix (counts_matrix
cor-
re-
la-
tion="pearsor
Computes a matrix of pairwise correlation coefficients among a set of 5C replicates.

Parameters
* counts_matrix (np.ndarray)— The rows are replicates, the columns are FFLJs.

* correlation ({ 'pearson’', 'spearman'})— Controls which correlation will be
used.

Returns The square, symmetric pairwise correlation matrix.

Return type np.ndarray

66 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.determine_bins module

Module for computing sets of evenly-spaced bins for tiling 5C regions.

lib5c.algorithms.determine_bins.default_bin_namer (bin_index, region_name=None)
Names a bin given its index and, optionally, the name of the region.

Parameters
* bin_index (int) — The index of this bin, within the region if appropriate.
* region_name (Optional [str])— The name of the region this bin is in.
Returns The name for this bin.

Return type str

Examples

>>> default_bin_namer (3)

'"BIN_003"

>>> default_bin_namer (123, region_name='Sox2")
'Sox2_BIN_123'

lib5c.algorithms.determine_bins.determine_regional_bins (regional_primermap,
bin_width, re-
gion_name=None,
bin_namer=<function
default_bin_namer>,
bin_namer_kwargs=None,
region_span="mid-to-
mid’, bin_number="n’)

Determines a set of bins of a specified width that will tile a set of primers within a region.
Parameters

* regional_primermap (List [Dict[str, Any]])— An ordered list of fragments
in this region. The elements of the list are dicts (representing fragments) with at least the
following structure:

{

'chrom': str
'start': int,
'end': int

See 1ib5c.parsers.primers.get_primermap ().
* bin_width (int) - The width of the bins, in bp.

* region_name (Optional [str])— The name of the region as a string. If this value is
provided, it will also be passed on to the bin_namer as a kwarg.

* bin_namer (Callable[[int, ..], str])-A function mapping bin indices to bin
names. This function will be used to name the resulting bins. If region_name is passed, it
will be passed on to this function as a kwarg.

* bin_namer_ kwargs (Optional [Dict [Any, Any]]) — Additional kwargs to be
passed to the bin_namer.

6.1. lib5c package 67



lib5¢c Documentation, Release 0.6.1

* region_span (Optional [str]) — Describes whether the span of the region is con-
sidered to be stretching from the midpoint of the first fragment to the midpoint of the last
fragment (‘mid-to-mid’) or from the beginning of the first fragment to the end of the last
fragment (‘start-to-end’).

* bin_number (Optional [str]) — Describes how many bins to fit in the region, given
that ‘n’ is the largest number of full bins that will fit in the region. Use ‘n’ to reproduce
traditional pipeline output, at the risk of leaving some fragment midpoints outside of the
range of the bins. Use ‘n+1’ for a more conservative binning strategy that is guaranteed to
not leave any fragment midpoints outside of the region if region_span is ‘mid-to-mid’.

Returns

An ordered list of bins tiling the region. The elements of the list are dicts (representing bins)
with the following structure:

{

'name': str,

'chrom': str,

'start': int,

'end': int,

'index': int,

'region': str (present only if region_name was passed)
}

Return type List[Dict[str, Any]]

Examples

>>> # single fragment results in single bin centered on the fragment
>>> regional_primermap = [{'chrom': 'chrl', 'start': 2000, 'end': 4000} ]
>>> (determine_regional_bins (regional_primermap, 4000,
region_name='Sox2') ==
[{'name': 'Sox2_BIN_000', 'chrom': 'chrl', 'start': 1000, 'end': 5000,
'index': 0, 'region': 'Sox2'}])
True

>>> # examples for region_span='mid-to-mid'

>>> regional_primermap = [{'chrom': 'chrl', 'start': 2000, 'end': 4000},
S {'chrom': 'chrl', 'start': 9500, 'end': 10500}]
>>> (determine_regional_bins (regional_ primermap, 5000) ==
[{"name': 'BIN_000', 'chrom': 'chrl', 'start': 4000, 'end': 9000,
. 'index': 0}])
True
>>> (determine_regional_bins (regional_primermap, 3000) ==
[{'name': 'BIN_000', 'chrom': 'chrl', 'start': 3500, 'end': 6500,
'index': 0},
{'name': 'BIN_001', 'chrom': 'chrl', 'start': 6500, 'end': 9500,
. "index': 11}1)
True

>>> (determine_regional_bins (regional_primermap, 3000,
bin_number="'n+1") ==

[{'name': 'BIN_000', 'chrom': 'chrl', 'start': 2000, 'end': 5000,
'index': 0},

{'name': 'BIN_001', 'chrom': 'chrl', 'start': 5000, 'end': 8000,
'index': 1},

(continues on next page)

68

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

{'name': 'BIN_002', 'chrom': 'chrl', 'start': 8000, 'end': 11000,
. "index': 21}1])
True

>>> # examples for region_span='start-to-end'

>>> regional_primermap = [{'chrom': 'chrl', 'start': 2000, 'end': 4000},

. {'chrom': 'chrl', 'start': 9000, 'end': 10000}]

>>> (determine_regional_bins (regional_primermap, 5000,
region_span='start-to-end') ==

[{"'name': 'BIN_000', 'chrom': 'chrl', 'start': 3500, 'end': 8500,
"index': 01}1])

True

>>> (determine_regional_bins (regional_primermap, 3000,
region_span='start-to-end') ==

[{"'name': 'BIN_000', 'chrom': 'chrl', 'start': 3000, 'end': 6000,
'index': 0},

{'name': 'BIN_001', 'chrom': 'chrl', 'start': 6000, 'end': 9000,
"index': 1}1])

True

>>> (determine_regional_bins (regional_primermap, 3000,
region_span='start-to-end',
bin_number="'n+1") ==

[{'name': 'BIN_000', 'chrom': 'chrl', 'start': 1500, 'end': 4500,
'index': 0},

{'name': 'BIN_001', 'chrom': 'chrl', 'start': 4500, 'end': 7500,
'index': 1},

{'name': 'BIN_002', 'chrom': 'chrl', 'start': 7500, 'end': 10500,

. "index': 21}1])
True

lib5c.algorithms.donut_filters module

lib5c.algorithms.donut_filters.apply filter (obs_matrix, exp_matrix, footprint,
max_percent=0.2, min_exp=0.1)
Computes a corrected expected value by applying a footprint to observed and expected matrix.

Parameters

* exp_matrix (obs_matrix,) — The square, symmetric matrices of observed and ex-
pected counts, respectively.

* footprint (np.ndarray) — The footprint to convolve. Should contain 1’s at positions
included in the footprint and 0’s everywhere else.

* max_percent (float) — If the proportion of nan’s in the footprint for a pixel is greater
than this value, the corrected expected at that point will be set to nan.

* min_exp (float) —If the sum of entries in exp_mat rix under the footprint for a par-
ticular pixel is less than this value, set the output at this pixel to nan to avoid numerical
instability related to division by small numbers.

Returns The corrected expected value.
Return type np.ndarray

lib5c.algorithms.donut_filters.donut_£ilt (obs_matrix, exp_matrix, p, w, max_percent=0.2,
min_exp=0.1)
Computes the full donut filter.

6.1. lib5c package 69



lib5¢c Documentation, Release 0.6.1

Parameters

* exp_matrix (obs_matrix,) — The square, symmetric matrices of observed and ex-
pected counts, respectively.

* w(p,)— The inner and outer radii of the donut, respectively.

* max_percent (float) — If the proportion of nan’s in the footprint for a pixel is greater
than this value, the corrected expected at that point will be set to nan.

* min_exp (float) —If the sum of entries in exp_mat rix under the footprint for a par-
ticular pixel is less than this value, set the output at this pixel to nan to avoid numerical
instability related to division by small numbers.

Returns The corrected expected value.
Return type np.ndarray

lib5c.algorithms.donut_filters.lower_ left_£filt (obs_matrix, exp_matrix, D, w,

max_percent=0.2, min_exp=0.1)
Computes the lower left donut filter.

Parameters

* exp_matrix (obs_matrix,) — The square, symmetric matrices of observed and ex-
pected counts, respectively.

* w (p, ) — The inner and outer radii of the donut, respectively.

* max_percent (float) — If the proportion of nan’s in the footprint for a pixel is greater
than this value, the corrected expected at that point will be set to nan.

* min_exp (f1loat) — If the sum of entries in exp_mat rix under the footprint for a par-
ticular pixel is less than this value, set the output at this pixel to nan to avoid numerical
instability related to division by small numbers.

Returns The corrected expected value.

Return type np.ndarray

Examples

>>> import numpy as np
>>> from lib5c.algorithms.donut_filters import lower_left_ filt
>>> from lib5c.algorithms.expected import empirical_binned
>>> from lib5c.algorithms.expected import make_expected_matrix_from list
>>> obs = np.array([[10, 4, 11,
[ 4, 8, 6],
[ 1, 6, 12]]) .astype(float)
>>> exp = make_expected_matrix_from_list (
C empirical_binned(obs, log_transform=False))
>>> exp

array ([[10., 5., 1.1,

[ 5., 10., 5.1,

[ 1., 5., 10.11)
>>> lower_left_filt (obs, exp, 0, 1, max_percent=0.0, min_exp=0.0)
array ([ [ nan, 4. , 0.81,

[ 4. , 10. , 6. ]

[ 0.8, 6. , mnanl])

70 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.enrichment module

Module for computing enrichments of annotations within categories of categorized loops.

lib5c.algorithms.enrichment.clear_enrichment_cac
Clear all caches related to enrichment computations.

hes ()

This function is deprecated. Previously, it was necessary to call this function within a script whenever the
content of annotationmaps or looping_classes changed. The current cache implementation does not

need to be cleared when this happens.

Examples

>>> import numpy as np

>>> clear_enrichment_caches ()

>>> annotationmaps = {'a': {'r1': [0, O, 2, 1]},

'b': {'r1': [1, 1, 0, 0]}}

>>> looping_classes = {'rl': np.array ([['' r ! , 'es' , 'ips'],
(', ', 'npc', 'npc'l,
['es! ‘npct, o, T T,
["ips', 'npc', "' P 11,

dtype='U25")}

>>> count_intersections('a', 'b', 'rl', 'es', annotationmaps,

. looping_classes, margin=0)

1

>>> looping_classes = {'rl': np.array ([["' , ! , 'ips', 'ips'l],
[ p ! , 'npc', 'npc'],
['ips', 'npc', ''" , ' 1,
["ips', 'npc', "' P 11,

dtype='U25")}

>>> count_intersections('a', 'b', 'rl', 'es', annotationmaps,

.. looping_classes, margin=0)

0

>>> clear_enrichment_caches ()

>>> count_intersections('a', 'b', 'rl', 'es', annotationmaps,

. . looping_classes, margin=0)

0

lib5c.algorithms.enrichment.count_intersections (annotation_a, annotation_b, region,
category, annotationmaps, loop-

ing_classes, threshold=0, margin=1,
asymmetric=False)

Counts the number of times one annotation intersects another at a particular category of called loops within a
specified region.

Parameters

* annotation_a (str) — The annotation to look for on one side of the loop. Must be a
key into annotationmaps.

* annotation_b (str)— The annotation to look for on the other side of the loop. Must be
akey into annotationmaps.

* region (str)— The region to count intersections over.
* category (str) - The loop category to count intersections for.

* annotationmaps (dict of annotationmap)— A dict describing the annotations.
In total, it should have the following structure:

6.1. lib5c package

71




lib5¢c Documentation, Release 0.6.1

'annotation_a_name': {
'region_1_name': list of int,
'region_2_name': list of int,

s

'annotation_b_name': {
'region_1_name': list of int,
'region_2_name': list of int,

s

where annotationmaps|['annotation_a']['region_r'] should be a list of
ints describing the number of 'annotation_a'’ s present in each bin of
S 'region_xr'.

* looping_classes (dict of np.ndarray with str dtype) — The keys
should be region names as strings, the values should be square, symmetric arrays of the
same size and shape as the indicated region, with string loop category names in the posi-
tions of categorized loops.

* threshold (int) — Bins are defined to contain an annotation if they are “hit” strictly
more than threshold times by the annotation.

* margin (int) — A bin is defined to contain an annotation if any bin within margin bins
is “hit” by the annotation. Corresponds to a “margin for error” in the intersection precision.

* asymmetric (bool)— Pass True to only count situations when A is upstream of B. Pass
False to count intersections regardless of order.

Returns The total number of intersections.

Return type int

Examples

>>>
>>>
>>>

>>>

>>>

import numpy as np
clear_enrichment_caches ()

annotationmaps = {'a': {'r1': [0, O, 2, 11},
'b': {'rl1': [1, 1, O, 01}}
looping_classes = {'rl': np.array ([["' v , 'es' 'ips'],
"' p , 'npc', 'npc'],
['es' , 'mpc', '' , "' 1,
["ips', 'npc', "' p ! 11,

dtype='U25") }

count_intersections('a', 'b', 'rl', 'es', annotationmaps,

looping_classes,

>>> count_intersections('a', 'b', 'rl',
looping_classes,
>>> count_intersections('a', 'b', 'rl',

looping_classes,

>>>

count_intersections.cache_info ()

margin=0)

'npc', annotationmaps,
margin=0)

'npc', annotationmaps,
margin=0)

(continues on next page)

72

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

CacheInfo (hits=1, misses=2, maxsize=None, currsize=2)

>>> count_intersections('a', 'b', 'rl', 'es', annotationmaps,

c. looping_classes, margin=0, asymmetric=True)
0
>>> count_intersections('b', 'a', 'rl', 'es', annotationmaps,
looping_classes, margin=0, asymmetric=True)

lib5c.algorithms.enrichment.count_intersections_all (annotation_a, annotation_b, cat-
egory, annotationmaps, loop-
ing_classes, threshold=0, mar-
gin=1, asymmetric=False)
Counts the number of times annotation_a and annotation_b are found on opposite ends of loops in a
given category of loop type across all genomic regions.

Parameters
* annotation_a (str)— Annotation to look for on one side of the loop.

* annotation_b (str)— Annotation to look for on the other side of the loop.

category (str)— Only consider loops of this category.

* annotationmaps (dict of annotationmap)— A dict describing the annotations.
In total, it should have the following structure:

{

'annotation_a_name': {
'region_1_name': list of int,
'region_2_name': list of int,

}V

'annotation_b_name': {
'region_1_name': list of int,
'region_2_name': list of int,

s

where annotationmaps|['annotation_a'] ['region_r'] should be a list of
ints describing the number of 'annotation_a' s present in each bin of
“'region_r'.

* looping_classes (dict of np.ndarray with str dtype) — The keys
should be region names as strings, the values should be square, symmetric arrays of the
same size and shape as the indicated region, with string loop category names in the posi-
tions of categorized loops.

threshold (int) — Bins are defined to contain an annotation if they are “hit” strictly
more than threshold times by the annotation.

margin (int)— A bin is defined to contain an annotation if any bin within margin bins
is “hit” by the annotation. Corresponds to a “margin for error” in the intersection precision.

* asymmetric (bool)— Pass True to only count situations when A is upstream of B. Pass
False to count intersections regardless of order.

Returns The total number of intersections across all regions.

6.1. lib5c package 73



lib5¢c Documentation, Release 0.6.1

Return type int

Examples

>>>
>>>

>>>

>>>

>>>

import numpy as np
annotationmaps = {'a': {'r1': [0, O, 21, '"r2': [1, 01},

'ty {'r1': [1, 1, 0], 'r2': [0, 1]1}}
looping_classes = {'rl': np.array([['npc', "' , 'es' 1,
[ p ! , 'npc'],
['es" , 'npc', "' 11,
dtype='U25"),
"r2': np.array ([["' , 'es' 1,
['es" , "' 11,

dtype='U25")}
count_intersections_all('a', 'b', 'es', annotationmaps,
looping_classes, margin=0)

count_intersections_all('a', 'b', 'npc', annotationmaps,
looping_classes, margin=0)

lib5c.algorithms.enrichment .get_annotation_percentage (annotation_a, annotation_b,

region, category, annota-
tionmaps,  looping_classes,
threshold=0, margin=1,
asymmetric=False)

Computes the precentage of loops within a particular region categorized into a particular category that represent
loops between annotation_a and annotation_b.

Parameters
* annotation_a (str)— Annotation to look for on one side of the loop.
* annotation_b (str)— Annotation to look for on the other side of the loop.
* region (str)— The region to compute the percentage within.
* category (str) - The category of loops to consider.

* annotationmaps (dict of annotationmap)— A dict describing the annotations.
In total, it should have the following structure:

{

'annotation_a_name': {
'region_1_name': list of int,
'region_2_name': list of int,

}I

'annotation_b_name': {
'region_1_name': list of int,
'region_2_name': list of int,

}I

where annotationmaps|['annotation_a']['region_r'] should be a list of
ints describing the number of 'annotation_a'' s present in each bin of
“'region_r'.

74

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

* looping_classes (dict of np.ndarray with str dtype) — The keys
should be region names as strings, the values should be square, symmetric arrays of the
same size and shape as the indicated region, with string loop category names in the posi-
tions of categorized loops.

* threshold (int) — Bins are defined to contain an annotation if they are “hit” strictly
more than threshold times by the annotation.

* margin (int) — A bin is defined to contain an annotation if any bin within margin bins
is “hit” by the annotation. Corresponds to a “margin for error” in the intersection precision.

* asymmetric (bool)— Pass True to only count situations when A is upstream of B. Pass
False to count intersections regardless of order.

Returns The fraction of loops within the region of the specified category that represent loops be-
tween the indicated annotations.

Return type float

Examples

>>> import numpy as np

>>> annotationmaps = {'a': {'r1': [0, O, O, 11},
'b': {'r1': [1, 1, 0, 01}}
>>> looping_classes = {'rl': np.array ([["' , ! , 'es' , 'ips'l],
[ p ! , 'npc', 'npc'l],
[Yesl , lnpcll T , T :|’
["ips', 'npc', "' ;! 11,

dtype='U25")}
>>> get_annotation_percentage('a', 'b', 'rl', 'ips', annotationmaps,
c. looping_classes, margin=0)
1.0
>>> get_annotation_percentage('a', 'b', 'rl', 'npc', annotationmaps,
looping_classes, margin=0)

lib5c.algorithms.enrichment .get_annotation_percentage_all (annotation_a, anno-
tation_b, category,
annotationmaps,
looping_classes, thresh-
old=0, margin=1,

asymmetric=False)
Computes the precentage of loops across all regions categorized into a particular category that represent loops

between annotation_a and annotation_b.
Parameters
* annotation_a (str)— Annotation to look for on one side of the loop.
* annotation_b (str)— Annotation to look for on the other side of the loop.
* category (str) — The category of loops to consider.

* annotationmaps (dict of annotationmap)— A dict describing the annotations.
In total, it should have the following structure:

{
'annotation_a_name': {
'region_1_name': list of int,

(continues on next page)

6.1. lib5c package 75



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

by

s

'region_2_name':

'annotation_b_name’':
'region_1_name':
'region_2_name':

list of int,

{
list of int,
list of int,

where annotationmaps|['annotation_a']['region_r'] should be a list of
ints describing the number of 'annotation_a' ‘s present in each bin of

“'region_r'.

* looping classes (dict of np.ndarray with str dtype) — The keys
should be region names as strings, the values should be square, symmetric arrays of the
same size and shape as the indicated region, with string loop category names in the posi-

tions of categorized loops.

* threshold (int) — Bins are defined to contain an annotation if they are “hit” strictly
more than threshold times by the annotation.

* margin (int) — A bin is defined to contain an annotation if any bin within margin bins
is “hit” by the annotation. Corresponds to a “margin for error” in the intersection precision.

* asymmetric (bool)— Pass True to only count situations when A is upstream of B. Pass
False to count intersections regardless of order.

Returns The fraction of loops across all regions of the specified category that represent loops be-

tween the indicated annotations.

Return type float

Examples
>>> import numpy as np
>>> annotationmaps = {'a': {'r1': [0, O, 2], 'r2': [1, 0]},
C 'p': {'r1': [1, 1, 01, 'r2': [0, 11}}
>>> looping_classes = {'rl': np.array([['npc', "' , 'es' 1,
[ p ! , 'npc'l],
['es' 'npc', "' 11,
dtype='U25"),
'r2': np.array([['npc', 'es' 1,
['es' 'npc']],
.. dtype='U25")}
>>> get_annotation_percentage_all('a', 'b', 'es', annotationmaps,

1.0

0.25

>>> get_annotation_percentage_all('a',

looping_classes, margin=0)

annotationmaps,
margin=0)

lbl, lnpcll
looping_classes,

lib5c.algorithms.enrichment .get_fisher_exact_pvalue (annotation_a, annotation_b, re-

gion, category, annotationmaps,
looping_classes,  threshold=0,
margin=1, asymmetric=False)

76

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

Use Fisher’s exact test to compute a one-sided p-value against the null hypothesis that the selected loop cate-
gory’s overlap with selected annotations in a chosen region is the same as the special “background” reference

loop category’s overlap with the same annotations.

Parameters

* annotation_a (str)— Annotation to look for on one side of the loop.

* annotation_b (str)— Annotation to look for on the other side of the loop.

* region (str)— The region to compute the p-value within

* category (str) - The category of loops to consider.

* annotationmaps (dict of annotationmap)— A dict describing the annotations.

In total, it should have the following structure:

{

'annotation_a_name': {
'region_1_name': list of int,
'region_2_name': list of int,

}I

'annotation_b_name': {
'region_1_name': list of int,
'region_2_name': list of int,

s

where annotationmaps|['annotation_a']['region_xr'] should be a list of
ints describing the number of 'annotation_a' ‘s present in each bin of

“'region_r'.

* looping _classes (dict of np.ndarray with str dtype) — The keys
should be region names as strings, the values should be square, symmetric arrays of the
same size and shape as the indicated region, with string loop category names in the posi-

tions of categorized loops.

* threshold (int) — Bins are defined to contain an annotation if they are “hit” strictly

more than threshold times by the annotation.

* margin (int) — A bin is defined to contain an annotation if any bin within margin bins
is “hit” by the annotation. Corresponds to a “margin for error” in the intersection precision.

* asymmetric (bool)— Pass True to only count situations when A is upstream of B. Pass

False to count intersections regardless of order.
Returns The p-value.

Return type float

Examples

>>> import numpy as np

>>> annotationmaps = {'a': {'r1': [1, O, O, 11},
ce 'b': {'r1': [1, 1, 0, 01}}
>>> looping_classes = {'rl': np.array ([["' ;!

[ll , v

'Tes! lipsl],

, 'npc', 'npc'l],

(continues on next page)

6.1. lib5c package

77




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

[’eS' r 'npcll v ’ v JI
['ips', 'npc', "' ;! 11,
C. dtype='U25")}
>>> looping_classes['rl'][looping_classes['rl'] == "'] = 'background'

>>> get_fisher_ exact_pvalue('a', 'b', 'rl', 'ips', annotationmaps,
c. looping_classes, margin=0)
0.428571428571428...
>>> get_fisher_exact_pvalue('a', 'b', 'rl', 'npc', annotationmaps,
c. looping_classes, margin=0)
0.642857142857142...

lib5c.algorithms.enrichment .get_fisher_exact_pvalue_all (annotation_a, annota-
tion_b, category, annota-
tionmaps, looping_classes,
threshold=0, margin=1,
asymmetric=False)
Use Fisher’s exact test to compute a one-sided p-value against the null hypothesis that the selected loop cate-

gory’s overlap with selected annotations across all regions is the same as the special “background” reference
loop category’s overlap with the same annotations.

Parameters
* annotation_a (str)— Annotation to look for on one side of the loop.
* annotation_b (str) - Annotation to look for on the other side of the loop.
* category (str) - The category of loops to consider.

* annotationmaps (dict of annotationmap)— A dict describing the annotations.
In total, it should have the following structure:

{

'annotation_a_name': {
'region_1_name': list of int,
'region_2_name': list of int,

}I

'annotation_b_name': {
'region_1_name': list of int,
'region_2_name': list of int,

s

where annotationmaps|'annotation_a']['region_r'] should be a list of
ints describing the number of 'annotation_a'' ‘s present in each bin of
“'region_r'.

* looping classes (dict of np.ndarray with str dtype) — The keys
should be region names as strings, the values should be square, symmetric arrays of the
same size and shape as the indicated region, with string loop category names in the posi-
tions of categorized loops.

threshold (int) — Bins are defined to contain an annotation if they are “hit” strictly
more than threshold times by the annotation.

margin (int) — A bin is defined to contain an annotation if any bin within margin bins
is “hit” by the annotation. Corresponds to a “margin for error” in the intersection precision.

78 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

* asymmetric (bool)— Pass True to only count situations when A is upstream of B. Pass
False to count intersections regardless of order.

Returns The p-value.

Return type float

Examples
>>> import numpy as np
>>> annotationmaps = {'a': {'r1': [0, 1, 2], 'r2': [1, 0]},
'ty {'r1': [1, 1, 0], 'r2': [0, 1]1}}

>>> looping_classes = {'rl': np.array([['npc', "' 'es' 1,

[ ’ v ’ 'an'JI

['es' 'npc', ! 11,

dtype='U25"),
'r2': np.array([['"ips', 'es' 1,

[Tes! v 11,
.. dtype='U25")}
>>> looping_classes['rl'] [looping_classes|['rl'] == '"'] = 'background'
>>> looping_classes['r2'] [looping_classes|['r2'] == ''] = 'background'
>>> round(get_fisher_exact_pvalue_all('a', 'b', 'es', annotationmaps,
C looping_classes, margin=0), 14)
0.4
>>> round(get_fisher_exact_pvalue_all('a', 'b', 'npc', annotationmaps,
C looping_classes, margin=0), 14)
0.8
>>> round(get_fisher_exact_pvalue_all('a', 'b', 'ips', annotationmaps,
c looping_classes, margin=0), 14)
0.6

lib5c.algorithms.enrichment .get_fold_change (annotation_a, annotation_b, region, cat-
egory, annotationmaps, looping_classes,
threshold=0, margin=1, asymmetric=False)
Computes the fold enrichment of the percentage of loops of a particular category in a particular region connect-
ing specified annotations relative to the special “background” reference category.

Parameters
* annotation_a (str)— Annotation to look for on one side of the loop.
* annotation_b (str)— Annotation to look for on the other side of the loop.
* region (str)— The region to compute the fold enrichment within.
* category (str)— The category of loops to consider.

* annotationmaps (dict of annotationmap)— A dict describing the annotations.
In total, it should have the following structure:

{

'annotation_a_name': {
'region_1_name': list of int,
'region_2_name': list of int,

}I

'annotation_b_name': {
'region_1_name': list of int,
'region_2_name': list of int,

(continues on next page)

6.1. lib5c package 79



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

by

where annotationmaps|'annotation_a']['region_xr'] should be a list of
ints describing the number of 'annotation_a'' ‘s present in each bin of
“'region_r'.

* looping _classes (dict of np.ndarray with str dtype) — The keys
should be region names as strings, the values should be square, symmetric arrays of the
same size and shape as the indicated region, with string loop category names in the posi-
tions of categorized loops.

* threshold (int) — Bins are defined to contain an annotation if they are “hit” strictly
more than threshold times by the annotation.

* margin (int) — A bin is defined to contain an annotation if any bin within margin bins
is “hit” by the annotation. Corresponds to a “margin for error” in the intersection precision.

* asymmetric (bool)— Pass True to only count situations when A is upstream of B. Pass
False to count intersections regardless of order.

Returns The fold enrichment.

Return type float

Examples

>>> import numpy as np

>>> annotationmaps = {'a': {'r1': [1, 0, O, 11},

'b': {'r1': [1, 1, 0, 01}}

>>> looping_classes = {'rl': np.array([["' , ! , 'es' , 'ips'l],
(', ', 'npc', 'mpc'l,
[’esl , Vnpcll T , T J,
["ips', 'npc', "' p ! 11,

dtype='U25")}
>>> looping_classes['rl'][looping_classes['rl'] == "'"'] = 'background'
>>> get_fold_change('a', 'b', 'rl', 'ips', annotationmaps, looping_classes,

3.0
>>>

margin=0)

get_fold_change('a', 'b', 'rl', 'npc', annotationmaps, looping_classes,
margin=0)

lib5c.algorithms.enrichment .get_fold_change_all (annotation_a, annotation_b, category,

Computes the fold enrichment of the percentage of loops of a particular category across all regions connecting

annotationmaps, looping_classes,
threshold=0, margin=1, asymmet-
ric=False)

specified annotations relative to the special “background” reference category.

Parameters
* annotation_a (str)— Annotation to look for on one side of the loop.
* annotation_b (str)— Annotation to look for on the other side of the loop.

* category (str) - The category of loops to consider.

80

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

* annotationmaps (dict of annotationmap)— A dict describing the annotations.
In total, it should have the following structure:

{

'annotation_a_name': {
'region_1_name': list of int,
'region_2_name': list of int,

}I

'annotation_b_name': {
'region_1_name': list of int,
'region_2_name': list of int,

s

where annotationmaps|['annotation_a']['region_r"'] should be a list of
ints describing the number of 'annotation_a'" s present in each bin of
“'region_xr'.

* looping_classes (dict of np.ndarray with str dtype) — The keys
should be region names as strings, the values should be square, symmetric arrays of the
same size and shape as the indicated region, with string loop category names in the posi-
tions of categorized loops.

* threshold (int) — Bins are defined to contain an annotation if they are “hit” strictly
more than threshold times by the annotation.

* margin (int) — A bin is defined to contain an annotation if any bin within margin bins
is “hit” by the annotation. Corresponds to a “margin for error” in the intersection precision.

* asymmetric (bool)— Pass True to only count situations when A is upstream of B. Pass
False to count intersections regardless of order.

Returns The fold enrichment.

Return type float

Examples
>>> import numpy as np
>>> annotationmaps = {'a': {'rl1': [0, 1, 2], 'r2': [1, 01},
'b': {'r1': [1, 1, 01, 'r2': [0, 11}}
>>> looping_classes = {'rl': np.array([['npc', "' , 'es' 1,
[" r v 14 'an'JI
['es' , 'npc', "' 11,
dtype='U25"),
'r2': np.array([['ips', 'es' 1,
['es' , "' 11,
C. dtype='U25")}
>>> looping_classes['rl'][looping_classes['rl'] == "'] = 'background'
>>> looping_classes['r2'] [looping_classes|['r2'] == '"'] = 'background'
>>> get_fold_change_all('a', 'b', 'es', annotationmaps, looping_classes,

2.0
>>>

margin=0)

get_fold_change_all('a', 'b', 'npc', annotationmaps, looping_classes,
margin=0)

(continues on next page)

6.1. lib5c package 81




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

1.0
>>> get_fold_change_all('a', 'b', 'ips', annotationmaps, looping_classes,
margin=0)

lib5c.algorithms.enrichment .process_annotations (annotation_label, region, annotation-

maps, threshold=0, margin=1)
Extracts one annotation and one region from a dict of annotationmaps and returns it in a vector form.

This function should be called from within the bodies of vectorized enrichment functions that accept standard
annotationmaps as arguments.

Parameters

e annotation_label (str)— The annotation for which a vector should be created. Must
be a key of annotationmaps.

* region (str) - The specific region for which a vector should be created. Must be a key
of annotationmaps[annotation_label].

* annotationmaps (dict of annotationmap)— A dict describing the annotations.
In total, it should have the following structure:

{
'annotation_a_name': {
'region_1_name': list of int,
'region_2_name': list of int,
br
'annotation_b_name': {
'region_1_name': list of int,
'region_2_name': list of int,
b
}
where annotationmaps|['annotation_a'] ['region_r'] should be a list of
ints describing the number of 'annotation_a'’ s present in each bin of

“'region_r'.

* threshold (int) — Bins are defined to contain an annotation if they are “hit” strictly
more than threshold times by the annotation.

* margin (int) — A bin is defined to contain an annotation if any bin within margin bins
is “hit” by the annotation. Corresponds to a “margin for error” in the intersection precision.

Returns The processed vector representing the coverage of the selected annotation across the se-
lected region, according to the definitions implied by the choise of threshold and margin.

Return type np.ndarray

Examples

>>> annotationmaps = {'a': {'r1': [0, 0, 2, 11}}
>>> process_annotations('a', 'rl', annotationmaps)
array ([0, 1, 1, 11)

(continues on next page)

82

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

>>> process_annotations('a', 'rl', annotationmaps, threshold=1, margin=0)
array ([0, 0, 1, 0])

lib5c.algorithms.expected module

Module for computing expected models for 5C interaction data.

lib5c.algorithms.expected.empirical_binned (regional_counts, log_transform=True)
Make a regional one-dimensional bin-level expected model by taking an average of the interaction values at
each distance.

Parameters
* regional_counts (np.ndarray) — The observed counts matrix for this region.

* log_transform (bool)-Pass True to take the geometric mean instead of the arithmetic
mean, which is equivalent to averaging log-transformed counts.

Returns The one-dimensional expected model. The i th element of the list corresponds to the
expected value for interactions between loci separated by i bins.

Return type List[float]

lib5c.algorithms.expected. force_monotonic (distance_expected)
Force a one-dimensional distance expected to be monotonic.

Parameters distance_expected (Union[List[float], Dict[int, float]]) -
The one-dimensional expected model to force to monotonicity. If the model describes bin-level
data, this should be a list of floats, where the i th element of the list corresponds to the expected
value for interactions between loci separated by i bins. If the model describes fragment-level
data, this should be a dict mapping interaction distances in units of base pairs to the expected
value at that distance.

Returns The forced-monotonic version of the input one-dimensional expected model.
Return type Union[List[float], Dict[int, float]]

lib5c.algorithms.expected.get_distance_expected (0obs_matrix, re-
gional_primermap=None, level="bin’,
powerlaw=False,  regression=False,

degree=1, lowess_smooth=False,
lowess_frac=0.8,
log_transform="auto’, ex-

clude_near_diagonal=False)
Convenience function for computing a regional one-dimensional expected model from a matrix of observed

counts, with properties that can be customized by kwargs.
Parameters
e obs_matrix (np.ndarray)— The matrix of observed counts to model.

* regional_primermap (Optional[List[Dict[str, Any]]]) - The
primermap for this region. Required if obs_mat rix is fragment-level.

e level ({'bin', 'fragment'})—Thelevel of obs_matrix.
* powerlaw (bool)— Whether or not to fit a discrete power law distribution to the data.
* regression (bool)— Whether or not to use a polynomial regression model.

* degree (int) — The degree of the regression model to use.

6.1. lib5c package 83



lib5¢c Documentation, Release 0.6.1

* lowess_smooth (bool) — Whether or not to use lowess smoothing to compute the
model.

* lowess_frac (float) - The lowess smoothing fraction parameter.
* log _transform({ 'counts', 'both', 'none', 'auto'})-

What to transform into log space.

counts: log-transform only the counts but not the distances. This results in semi-log
models, which don’t work on fragment-level data yet.

both: log-transform both the counts and the distances, resulting in log-log models.

none: don’t log anything.

auto: automatically pick a reasonably choice based on the other kwargs.

* exclude_near_diagonal (bool) — If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The one-dimensional expected model. For bin-level data, this is a list of floats, where the i
th element of the list corresponds to the expected value for interactions between loci separated
by i bins. For fragment-level data, this is a dict mapping interaction distances in units of base
pairs to the appropriate expected values.

Return type Union[List[float], Dict[int, float]]

lib5c.algorithms.expected.get_global_distance_expected (counts, primermap=None,

level="bin’, power-
law=False, regres-
sion=False, degree=1,

lowess_smooth=False,
lowess_frac=0.8,
log_transform="auto’, ex-

clude_near_diagonal=False)
Convenience function for computing a global one-dimensional expected model from a dict of observed counts,

with properties that can be customized by kwargs.
Parameters
* counts (Dict [str, np.ndarray ])- The dict of observed counts to model.

* primermap (Optional[Dict([str, List[Dict[str, Any]]]]) - A
primermap corresponding to counts.

e level ({'bin', 'fragment'})-Thelevel of counts.

* powerlaw (bool)— Whether or not to fit a discrete power law distribution to the data.
* regression (bool)— Whether or not to use a polynomial regression model.

* degree (int) — The degree of the regression model to use.

* lowess_smooth (bool) — Whether or not to use lowess smoothing to compute the
model.

* lowess_frac (float) - The lowess smoothing fraction parameter.
* log _transform({ 'counts', 'both', 'none', 'auto'})-
What to transform into log space.

— counts: log-transform only the counts but not the distances. This results in semi-log
models, which don’t work on fragment-level data yet.

84 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

— both: log-transform both the counts and the distances, resulting in log-log models.
— none: don’t log anything.
— auto: automatically pick a reasonably choice based on the other kwargs.

* exclude_near_diagonal (bool) - If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The one-dimensional expected model. For bin-level data, this is a list of floats, where the i
th element of the list corresponds to the expected value for interactions between loci separated
by i bins. For fragment-level data, this is a dict mapping interaction distances in units of base
pairs to the appropriate expected values.

Return type Union[List[float], Dict[int, float]]

lib5c.algorithms.expected.global_empirical_binned (counts, log_transform=True)
Make a global one-dimensional bin-level expected model by taking an average of the interaction values at each
distance.

Parameters
* counts (Dict [str, np.ndarray ])- The observed counts dict to fit the model to.

* log_transform(bool)—Pass True to take the geometric mean instead of the arithmetic
mean, which is equivalent to averaging log-transformed counts.

Returns The one-dimensional expected model. The i th element of the list corresponds to the
expected value for interactions between loci separated by i bins. The length of this list will
match the size of the largest region in the input counts dict.

Return type List[float]

lib5c.algorithms.expected.global_lowess_binned (counts, frac=0.8, ex-

clude_near_diagonal=False)
Make a global one-dimensional bin-level expected model by performing lowess regression in unlogged space,

excluding the first third of the distance scales and only using the emprical arithmetic means there instead.
Parameters
e counts (Dict [str, np.ndarray])- The observed counts dict to fit the model to.
* frac (float) - The lowess smoothing fraction parameter to use.

* exclude_near_diagonal (bool) - If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The one-dimensional expected model. The i th element of the list corresponds to the
expected value for interactions between loci separated by i bins. The length of this list will
match the size of the largest region in the input counts dict.

Return type List[float]

lib5c.algorithms.expected.global_lowess_binned_ log_ counts (counts, pseudo-
count=1, frac=0.8, ex-
clude_near_diagonal=False)
Make a global one-dimensional bin-level expected model by performing lowess regression in log-counts space,

excluding the first third of the distance scales and only using the emprical geometric means there instead.
Parameters
* counts (Dict [str, np.ndarray ])- The observed counts dict to fit the model to.
* pseudocount (int) - The pseudocount to add to the counts before logging.

* frac (float)— The lowess smoothing fraction parameter to use.

6.1. lib5c package 85



lib5¢c Documentation, Release 0.6.1

* exclude_near_diagonal (bool) — If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The one-dimensional expected model. The i th element of the list corresponds to the
expected value for interactions between loci separated by i bins. The length of this list will
match the size of the largest region in the input counts dict.

Return type List[float]

lib5c.algorithms.expected.global_lowess_log log binned (counts, pseudo-
count=1,  frac=0.8, ex-
clude_near_diagonal=False)
Make a global one-dimensional bin-level expected model by performing lowess regression in log-log space.

Parameters
* counts (Dict [str, np.ndarray ])- The observed counts dict to fit the model to.
* pseudocount (int) - The pseudocount to add to the counts before logging.
* frac (float)— The lowess smoothing fraction parameter to use.

* exclude_near_diagonal (bool) — If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The one-dimensional expected model. The i th element of the list corresponds to the
expected value for interactions between loci separated by i bins. The length of this list will
match the size of the largest region in the input counts dict.

Return type List[float]

lib5c.algorithms.expected.global_lowess_log_log_fragment (counts, distances, pseu-

docount=1, frac=0.8)
Make a global one-dimensional fragment-level expected model by performing lowess regression in log-log

space.
Parameters
e counts (Dict [str, np.ndarray])- The observed counts dict to fit the model to.

* distances (Dict[str, np.ndarray])— A dict of pairwise distance matrices de-
scribing the genomic distances between the elements of the matrices in counts. The keys
and array dimensions should match the keys and array dimensions of counts.

* pseudocount (int) - The pseudocount to add to the counts before logging.
* frac (float)— The lowess smoothing fraction parameter to use.

Returns A mapping from interaction distances in units of base pairs to the expected value at that
distance.

Return type Dict[int, float]

lib5c.algorithms.expected.global_poly_ log_log binned (counts, degree=1,
pseudocount=1, ex-

clude_near_diagonal=False)
Make a global one-dimensional bin-level expected model by fitting a polynomial in log-log space.

Parameters
e counts (Dict [str, np.ndarray])- The observed counts dict to fit the model to.
* degree (int) — The degree of the polynomial to fit.

* pseudocount (int) - The pseudocount to add to the counts before logging.

86 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

* exclude_near_diagonal (bool) — If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The one-dimensional expected model. The i th element of the list corresponds to the
expected value for interactions between loci separated by i bins. The length of this list will
match the size of the largest region in the input counts dict.

Return type List[float]

lib5c.algorithms.expected.global_poly log_log_fragment (counts, distances, degree=1,
pseudocount=1)
Make a global one-dimensional fragment-level expected model by fitting a polynomial in log-log space.

Parameters
* counts (Dict [str, np.ndarray])- The observed counts dict to fit the model to.

* distances (Dict[str, np.ndarray]) - A dict of pairwise distance matrices de-
scribing the genomic distances between the elements of the matrices in counts. The keys
and array dimensions should match the keys and array dimensions of counts.

* degree (int) — The degree of the polynomial to fit.
* pseudocount (int) - The pseudocount to add to the counts before logging.

Returns A mapping from interaction distances in units of base pairs to the expected value at that
distance.

Return type Dict[int, float]

libb5c.algorithms.expected.global_powerlaw_ binned (counts, ex-
clude_near_diagonal=False)
Make a global one-dimensional bin-level expected model by fitting a polynomial in log-log space.

Parameters
* counts (Dict [str, np.ndarray ])- The observed counts dict to fit the model to.

* exclude_near_diagonal (bool) - If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The one-dimensional expected model. The i th element of the list corresponds to the
expected value for interactions between loci separated by i bins. The length of this list will
match the size of the largest region in the input counts dict.

Return type List[float]

lib5c.algorithms.expected.interpolate_expected (expected_matrix, regional_primermap,

distance)
Interpolate the value of an expected model (represented as a matrix) at an arbitrary distance scale.

Parameters

* expected_matrix (np.ndarray) — The expected matrix to use as a source for inter-
polation.

* regional_primermap (List [Dict[str, Any]]) — The primermap for this re-
gion.

* distance (int) — The interaction distance at which to estimate the expected value, in
base pairs.

Returns The interpolated expected value, or -1 if distance is outside of the range of the expected
model.

Return type float

6.1. lib5c package 87



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.expected.lowess_binned (regional_counts, frac=0.8, ex-

clude_near_diagonal=False)
Make a regional one-dimensional bin-level expected model by performing lowess regression in unlogged space,

excluding the first third of the region and only using the emprical geometric means there instead.
Parameters
* regional_counts (np.ndarray) — The observed counts matrix for this region.
* frac (float)— The lowess smoothing fraction parameter to use.

* exclude_near_diagonal (bool) - If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The one-dimensional expected model. The i th element of the list corresponds to the
expected value for interactions between loci separated by i bins.

Return type List[float]

lib5c.algorithms.expected.lowess_binned_log counts (regional_counts, pseudo-
count=1, frac=0.8, ex-

clude_near_diagonal=False)
Make a regional one-dimensional bin-level expected model by performing lowess regression in log-counts space,

excluding the first third of the region and only using the emprical geometric means there instead.
Parameters
* regional_counts (np.ndarray)— The observed counts matrix for this region.
* pseudocount (int) - The pseudocount to add to the counts before logging.
* frac (float) - The lowess smoothing fraction parameter to use.

* exclude_near_diagonal (bool) — If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The one-dimensional expected model. The i th element of the list corresponds to the
expected value for interactions between loci separated by i bins.

Return type List[float]

lib5c.algorithms.expected.lowess_log_log_binned (regional_counts, pseudo-
count=1, frac=0.8, ex-

clude_near_diagonal=False)
Make a regional one-dimensional bin-level expected model by performing lowess regression in log-log space.

Parameters
* regional_counts (np.ndarray)— The observed counts matrix for this region.
* pseudocount (int) - The pseudocount to add to the counts before logging.
* frac (float)— The lowess smoothing fraction parameter to use.

* exclude_near_diagonal (bool) — If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The one-dimensional expected model. The i th element of the list corresponds to the
expected value for interactions between loci separated by i bins.

Return type List[float]

lib5c.algorithms.expected.lowess_log_log_ fragment (regional_counts, distances, pseudo-
count=1, frac=0.8)
Make a regional one-dimensional fragment-level expected model by performing lowess regression in log-log
space.

88 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Parameters
* regional_counts (np.ndarray)— The observed counts matrix for this region.

* distances (np.ndarray) — The pairwise distance matrix for all fragments in this re-
gion in units of base pairs.

* pseudocount (int) - The pseudocount to add to the counts before logging.
* frac (float)— The lowess smoothing fraction parameter to use.

Returns A mapping from interaction distances in units of base pairs to the expected value at that
distance.

Return type Dict[int, float]

lib5c.algorithms.expected.make_distance_matrix (regional_primermap)

Construct a pairwise distance matrix for the fragments in a region from the primermap describing those frag-
ments.

Parameters regional_primermap (List [Dict[str, Any]])— The primermap for this
region.

Returns The pairwise distance matrix for all fragments in this region in units of base pairs.

Return type np.ndarray

lib5c.algorithms.expected.make_expected_dict_from_matrix (expected_matrix, dis-
tance_matrix)
Convert an expected matrix into a dict representation of the one-dimensional expected model it embodies.

Parameters
* expected_matrix (np.ndarray)— The expected matrix.

* distance_matrix (np.ndarray)— The pairwise distance matrix for the fragments in
this region.

Returns A mapping from interaction distances in units of base pairs to the expected value at that
distance.

Return type Dict[int, float]

lib5c.algorithms.expected.make_expected_matrix (obs_matrix, regional_primermap=None,
level="bin’, powerlaw=False,
regression=False, degree=1,
lowess_smooth=False, lowess_frac=0.8,
log_transform="auto’, mono-
tonic=False, donut=Fualse, w=15,
p=5, donut_frac=0.2, min_exp=0.1,
log_donut=False, max_donut_ll=False,
distance_expected=None, ex-

clude_near_diagonal=False)
Convenience function for computing a complete expected matrix given a matrix of observed counts that can be

customized with a variety of kwargs.

Parameters

* obs_matrix (np.ndarray)— The matrix of observed counts to make an expected ma-
trix for.

* regional_primermap (Optional[List[Dict[str, Any]]]) — The
primermap for this region. Required if obs_mat rix is fragment-level.

e level ({'bin', 'fragment'})—Thelevel of obs_matrix.

6.1. lib5c package 89



lib5¢c Documentation, Release 0.6.1

* powerlaw (bool)— Whether or not to fit a discrete power law distribution to the data.
* regression (bool)— Whether or not to use a polynomial regression model.
* degree (int) — The degree of the regression model to use.

* lowess_smooth (bool) — Whether or not to use lowess smoothing to compute the
model.

* lowess_frac (fl1oat)— The lowess smoothing fraction parameter.
* log transform({ 'counts', 'both', 'none', 'auto'})-

What to transform into log space.

counts: log-transform only the counts but not the distances. This results in semi-log
models, which don’t work on fragment-level data yet.

both: log-transform both the counts and the distances, resulting in log-log models.

none: don’t log anything.

auto: automatically pick a reasonably choice based on the other kwargs.

* monotonic (bool)—Pass True to force the one-dimensional expected model to be mono-
tonic.

* donut (bool)-Pass True to apply donut-filter local correction to the expected model. Not
implemented for fragment-level input data.

* w (int) — The outer width of the donut when using donut correction. Should be an odd
integer.

* p (int) — The inner width of the donut when using donut correction. Should be an odd
integer.

* donut_frac (float) — If the fraction of possible elements in the donut that lie wihtin
the region and have non-infinte values is lower than this fraction then the donut-corrected
value at that point will be NaN.

* min_exp (float) — If the sum of the 1-D expected matrix under the donut or lower left
footprint for a particular pixel is less than this value, set the output at this pixel to nan to
avoid numerical instability related to division by small numbers.

* log_donut (boo1l) - Pass True to perform donut correction in log-counts space.

* max_donut_11 (bool)-If donut is True, pass True here too to make the donut correc-
tion use the maximum of the “donut” and “lower-left” regions.

* distance_expected (Optional [Union[List[float], Dict[int,
float]]]) — Pass a one-dimensional expected model to use it instead of comput-
ing a new one from scratch according to the other kwargs.

* exclude_near_diagonal (bool) - If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns
o Tuple[np.ndarray, Union[List[float], Dict[int, float]], Optional[

* np.ndarray]] — The first element of the tuple is the expected matrix. The second element
of the tuple is the one-dimensional expected model, which will be a list of expected values
if level was ‘bin’ or a dict mapping integer distances to expected values if level was
‘fragment’. The third element will be the pairwise distance matrix if 1evel was ‘fragment’,
but will simply be None if 1evel was ‘bin’.

90 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.expected.make_expected_matrix_ from dict (distance_expected,

) ) ) distance_matrix)
Converts a fragment-level one-dimensional expected model into an expected matrix.

Parameters

* distance_expected (Dict[int, float])— A mappingfrom interaction distances
in units of base pairs to the expected value at that distance.

* distance_matrix (np.ndarray) - The pairwise distance matrix for the fragments in
this region.

Returns The expected matrix.
Return type np.ndarray

lib5c.algorithms.expected.make_expected_matrix from list (distance_expected)
Converts a bin-level one-dimensional expected model into an expected matrix.

Parameters distance_expected (List [float ])— The one-dimensional distance expected
model to make a matrix out of.

Returns The expected matrix.
Return type np.ndarray

lib5c.algorithms.expected.make_poly log_log binned_expected _matrix (obs_matrix,
ex-
clude_near_diagonal=False)
Convenience function for quickly making an expected matrix for a bin-level observed counts matrix based on a

simple power law relationship.
Parameters
* obs_matrix (np.ndarray) - The matrix of observed counts.

* exclude_near_diagonal (bool) - If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The expected matrix.
Return type np.ndarray

lib5c.algorithms.expected.make_poly log_log_fragment_expected_matrix (obs_matrix,
re-

gional_primermap)
Convenience function for quickly making an expected matrix for a fragment-level observed counts matrix based

on a simple power law relationship.
Parameters
¢ obs_matrix (np.ndarray)— The matrix of observed counts.

* regional_primermap (List [Dict[str, Any]]) — Primermap describing the
loci in the region represented by obs_mat rix. Necessary to figure out distances between
elements in the contact matrix.

Returns The expected matrix.
Return type np.ndarray

lib5c.algorithms.expected.make_powerlaw_binned_ expected_matrix (obs_matrix, ex-

clude_near_diagonal=False)
Convenience function for quickly making an expected matrix for a bin-level observed counts matrix based on a

simple power law relationship.

6.1. lib5c package 91



lib5¢c Documentation, Release 0.6.1

Parameters
* obs_matrix (np.ndarray) - The matrix of observed counts.

* exclude_near_diagonal (bool) — If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The expected matrix.

Return type np.ndarray

lib5c.algorithms.expected.poly_log_log_binned (regional_counts, degree=1, pseudo-
count=1, exclude_near_diagonal=False)
Make a regional one-dimensional bin-level expected model by fitting a polynomial in log-log space.

Parameters
* regional_counts (np.ndarray)— The observed counts matrix for this region.
* degree (int) — The degree of the polynomial to fit.
* pseudocount (int)— The pseudocount to add to the counts before logging.

* exclude_near_ diagonal (bool) - If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The one-dimensional expected model. The i th element of the list corresponds to the
expected value for interactions between loci separated by i bins.

Return type List[float]

lib5c.algorithms.expected.poly_log_log_fragment (regional_counts, distances, degree=1,
pseudocount=1)
Make a regional one-dimensional fragment-level expected model by fitting a polynomial in log-log space.

Parameters
* regional_counts (np.ndarray)— The observed counts matrix for this region.

* distances (np.ndarray) — The pairwise distance matrix for all fragments in this re-
gion in units of base pairs.

* degree (int) — The degree of the polynomial to fit.
* pseudocount (int) - The pseudocount to add to the counts before logging.

Returns A mapping from interaction distances in units of base pairs to the expected value at that
distance.

Return type Dict[int, float]

lib5c.algorithms.expected.powerlaw_binned (regional_counts, ex-
clude_near_diagonal=False)
Make a regional one-dimensional bin-level expected model by fitting a polynomial in log-log space.

Parameters
* regional_counts (np.ndarray)— The observed counts matrix for this region.

* exclude_near_diagonal (bool) - If regression or lowess_smooth are True, set this
kwarg to True to ignore the first third of the distance scales when fitting the model.

Returns The one-dimensional expected model. The i th element of the list corresponds to the
expected value for interactions between loci separated by i bins.

Return type List[float]

92 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.express module

Module for implementation of the “Express” algorithm from Sauria et al. 2015.

lib5c.algorithms.express.express_normalize_matrix (obs_matrix, exp_matrix,

max_iter=1000, eps=0.0001)
Express balance a matrix given a corresponding expected matrix.

Parameters
* obs_matrix (np.ndarray) - The matrix to normalize.
* exp_matrix (np.ndarray)— The expected matrix corresponding to the obs_matrix.
* max_iter (int)- The maximum number of iterations.

* eps (float) — When the fractional change in the residual is less than this number, the
algorithm is considered to have converged and will stop iterating.

Returns The first element of the tuple is the normalized matrix. The second element is the multi-
plicative bias vector. The third element is a list containing the L1 norm of the residual at every
iteration.

Return type Tuple[np.ndarray, np.ndarray, List[float]]

lib5c.algorithms.express. joint_express_normalize (obs_matrices, exp_matrices,

max_iter=1000, eps=0.0001)
Express balance a set of matrices given a set of corresponding expected matrices, using a single shared bias
vector.

Parameters
* obs_matrices (List [np.ndarray ])— The matrix to normalize.

* exp_matrices (List[np.ndarray]) — The expected matrix corresponding to the
obs_matrix.

* max_iter (int)- The maximum number of iterations.

* eps (float) — When the fractional change in the residual is less than this number, the
algorithm is considered to have converged and will stop iterating.

Returns The first element of the tuple is the list of normalized matrices. The second element is the
multiplicative bias vector. The third element is a list containing the L1 norm of the residual at
every iteration.

Return type Tuple[List[np.ndarray], np.ndarray, List[float]]

lib5c.algorithms.knight_ruiz module

Knight-Ruiz algorithm.
Transcribed from the MATLAB source provided in Rao et al. 2014 by Dan Gillis.

lib5c.algorithms.knight_ruiz.balance_matrix (matrix, bias_vector, invert=False)
Balance a matrix given the appropriate multiplicative bias vector.

Parameters
* matrix (np.ndarray) —
* bias_vector (np.ndarray) —

* invert (Optional [bool])—Pass True to invert the bias vector before balancing.

6.1. lib5c package 93



lib5¢c Documentation, Release 0.6.1

Returns The balanced matrix.

Return type np.ndarray

lib5c.algorithms.knight_ruiz.kr_balance (array, tol=1e-06, xO=None, delta=0.1, ddelta=3,

fl=0, max_iter=3000)
Performs Knight-Ruiz matrix balancing algorithm on a 2D symmetric numpy array.

Note that this function does not check for symmetry of the array - this function may not converge if given
non-symmetric matrix.

Note also that this function does not return balanced matrix - it returns the entries of the diagonal matrix that
should be multiplied on either side of array to get balanced matrix.

Parameters
* array (np.ndarray)— Matrix to balance. Should be square and symmetric.
e tol (float)— Parameter related to tolerance

* x0 (Optional [np.ndarray]) — The initial guess to use for the bias vector. If not
passed, a vector of all 1’s will be used.

* delta (float) — Parameter related to learning rate.
* ddelta (float) — Parameter related to learning rate.
* £1 (int)— Adjusts the verbosity of command line output.

* max_iter (Optional [int]) — The maximum number of iterations. Pass None to set
no limit.

Returns The first element is the bias vector, the second is the residual.

Return type Tuple[np.ndarray]

Examples

>>> import numpy as np
>>> X = np.reshape(range(16), (4, 4)).astype(float)

>>> counts = X + X.T
>>> counts
array ([[ 0., 5., 10., 15.7],

[ 5., 10., 15., 20.

[10., 15., 20., 25.

[15., 20., 25., 30.
>>> counts.sum(axis=1)
array ([30., 50., 70., 90.1)
>>> x, res = kr_balance (counts)
>>> balanced = x.T % counts »* x
>>> balanced

[
N~

array ([[O. , 0.26604444, 0.34729636, 0.3866592 ],
[0.26604444, 0.2489703 , 0.24375574, 0.241229527,
[0.34729636, 0.24375574, 0.21213368, 0.19681423],
[0.3866592 , 0.24122952, 0.19681423, 0.17529705]1])
>>> balanced.sum(axis=1)
array([1., 1., 1., 1.1])
>>> for 1 in range(len(counts)):
for j in range(i+l):
if 1 %2 ==3 % 2:
counts[i, j] = 0.0

(continues on next page)

94

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

counts[j, 1] = 0.0
>>> counts
array ([[ 0., 5., 0., 15.1,
[ 5., 0., 15., 0.7,
[ 0., 15., 0., 25.7,
[15., 0., 25., 0.11)
>>> x, res kr_balance (counts)

>>> balanced = x.T % counts * x
>>> balanced
array ([[O0. , 0.42705098, 0. , 0.57294902],
[0.42705098, O. , 0.57294902, 0. 1,
[O. , 0.57294902, 0. , 0.427050987],
[0.57294902, O. , 0.42705098, 0 11)
>>> balanced.sum(axis=1)
array([1., 1., 1., 1.1)
lib5c.algorithms.knight_ruiz.kr balance_matrix (matrix, max_iter=3000, re-

tain_scale=True, imputation_size=0)
Convenience function for applying KR balancing to a counts matrix.

Parameters
* matrix (np.ndarray) - The matrix to balance.
* max_iter (int) - The maximum number of iterations to try.

* retain_scale (bool)—Pass True to rescale the results to the scale of the original matrix
using a ratio of geometric means.

* imputation_size (int)—Pass an int greater than O to replace NaN’s in the matrix with
a local median approximation. Pass 0 to skip imputation.

Returns The first array contains the balanced matrix. The second contains the bias vector. The third
contains the residual.

Return type Tuple[np.ndarray, np.ndarray, np.ndarray]

lib5c.algorithms.knight_ruiz.strip_ zero_rows_columns_sym mat (sym_mat)
Given symmetric 2D numpy array sym_mat, removes rows and columns that have no non-zero entries

lib5c.algorithms.outliers module

Module for identifying and removing high spatial outliers from 5C contact matrices.

libbc.algorithms.outliers.flag _array_high_ spatial_outliers (array, size=5,

fold_threshold=8.0)
Identifies which elements of an array are high spatial outliers.

Parameters
* array (np.ndarray) — The array to look for outliers in.

* size (int) - The size of the window to look in around each element when deciding if it is
an outlier. Should be an odd integer.

* fold threshold (float)- Elements will be flagged as outliers if they are greater than
this number or greater than this many times the local median (as estimated using the window
size in size).

6.1. lib5c package 95




lib5¢c Documentation, Release 0.6.1

Returns A matrix of the same size and shape as the input matrix, with 1’s at positions flagged as
high spatial outliers and 0’s everywhere else.

Return type np.ndarray

libb5c.algorithms.outliers.remove_high_spatial_outliers (counts, size=5,

fold_threshold=8.0,
overwrite_value="nan’,
primermap=None,
level="fragment’)

Convenience function for removing high spatial outliers from counts matrices.

Parameters

counts (np.ndarray) — The matrix to remove outliers from.

size (int) - The size of the window to look in around each element when deciding if it is
an outlier. Should be an odd integer.

fold_threshold (float)—Elements will be flagged as outliers if they are greater than
this number or greater than this many times the local median (as estimated using the window
size in size).

overwrite_value ({'nan', 'zero', 'median'}) - The value to overwrite el-
ements flagged as outliers with.

primermap (List [Dict [str, Any]])- The list of fragments for this region corre-
sponding to counts.

level ({'fragment', 'bin'})— Whether to interpret counts as bin- or fragment-
level. The difference is that bin-level matrices are assumed to have equal distance between
elements.

Returns The input matrix with all spatial outliers overwritten.h

Return type np.ndarray

lib5c.algorithms.outliers.remove_primer_primer_ pairs (counts_superdict,

primermap, thresh-
old=5.0, num_reps=None,
fraction_reps=None,

all_reps=False, inplace=True)

Removes primer-primer pairs from a set of replicates according to criteria specified by the kwargs.

Legacy code inherited from https://bitbucket.org/creminslab/primer-primer-pair-remover

Parameters

counts_superdict (Dict[str, Dict[str, np.ndarray]])-The countssu-
perdict data structure to remove primer-primer pairs from.

primermap (Dict([str, List[Dict([str, Any]]]) — The primermap or pix-
elmap describing the loci whose interaction frequencies are quantified in the
counts_superdict.

threshold (float) — Sets the threshold. A rep passes the threshold if it is greater than
or equal to this number.

num_reps (Optional [int])— Pass an int to make the condition be that this many reps
must clear the threshold.

fraction_reps (Optional [float])—Pass afraction (between O and 1) as a float to
make the condition be that this fraction of the reps must clear the threshold.

96

Chapter 6. lib5c


https://bitbucket.org/creminslab/primer-primer-pair-remover

lib5¢c Documentation, Release 0.6.1

* all_reps (bool) — Pass True to make the condition be that the sum across all repli-
cates must clear the threshold. This is the default mode if niether num_reps nor
percentage_reps is passed.

* inplace (bool) — Pass True to operate in-place on the passed counts_superdict;
pass False to return a new counts superdict.

Returns The result of the primer-primer pair removal, in the form of a counts superdict data structure
analagous to the counts_superdict passed to this function.

Return type Dict[str, Dict[str, np.ndarray]]

lib5c.algorithms.pca module

lib5c.algorithms.pca.compute_pca (matrix, scaled=True, logged=False, kernel=None, ker-
nel_kwargs=None, variant="pca’, pf=1)
Performs PCA on a matrix.

Parameters

* matrix (np.ndarray) — The design matrix, whose rows are observations (replicates)
and whose columns are features (interaction values at each position).

e scaled (bool) — Pass True to scale the features to unit variance.
* logged (bool) — Pass True to log the features before PCA.

* kernel (Optional([str]) — Pass a kernel accepted by sklearn.
decomposition.KernelPCA () to perform KPCA.

* kernel_kwargs (Optional [Dict[str, Any]])- Kwargs to use for the kernel.
e variant ({ 'pca', 'ica', 'fa', 'mds'})- Select which variant of PCA to use.
» pf (int) — Specify an integer number of pure polynomial features to use in the PCA.

Returns The first element is the matrix of PCA-projected replicates. The second element is the
PVE for each component, or None if the PCA method selected doesn’t provide a PVE estimate.
The third element is a matrix of the principle component vectors, or None if the PCA method
selected doesn’t provide a set of principle component vectors.

Return type Tuple[np.ndarray]

lib5c.algorithms.pca.compute_pca_from counts_superdict (counts_superdict,
rep_order=None,

**kwargs)
Convenience function for performing PCA on a counts superdict data structure.

Parameters

* counts_superdict (Dict [str, Dict[str, np.ndarray]])-Thecountssu-
perdict structure to compute PCA on.

* rep_order (Optional[List[str]]) — The order in which the replicates in
counts_superdict should be considered when filling in the rows of the design ma-
trix.

* kwargs (Dict [str, Any])- Additional kwargs to be passed to compute_pca ().

Returns The first element is the matrix of PCA-projected replicates. The second element is the
PVE for each component, or None if the PCA method selected doesn’t provide a PVE estimate.
The third element is a matrix of the principle component vectors, or None if the PCA method
selected doesn’t provide a set of principle component vectors.

6.1. lib5c package 97



lib5¢c Documentation, Release 0.6.1

Return type Tuple[np.ndarray]

lib5c.algorithms.qnorm module

Module for quantile normalization.

Original author of gnorm (), _rank_data (), _average_rows (), and _sub_in_normed_val (): Dan
Gillis
Note: data matrices in these functions are typically expected to be arranged with each column representing one repli-

cate, except for the functions _rank_data (), _average_rows (), and _sub_in_normed_val (), which
expect them to be arranged with each row representing one replicate.

The exposed functions are gnorm (), gnorm_parallel (), gnorm_fast (), gnorm_fast_parallel (),
and the convenience function gnorm counts_superdict ().

lib5c.algorithms.gnorm.qgnorm (data, tie="lowest’, reference_index=None)
Quantile normalizes a data set.

Parallelizable if data is a 2d np.ndarray; see 1ib5c.algorithms.gnorm.gnorm_parallel ().
Parameters

* data (2d numeric structure, or dict of 1d numeric structure) —
Anything that can be cast to array. Should be passed as row-major. Quantile normaliza-
tion will performed on the columns of data.

e tie ({'lowest', 'average'}, optional)-Pass 'lowest' to set all tied en-
tries to the value of the lowest rank. Pass 'average"' to set all tied entries to the average
value across the tied ranks.

* reference_index (int or str, optional)-Ifdata isarow-major array, pass
a column index to serve as a reference distribution. If data is a dict, pass a key of that
dict that should serve as the reference distribution. Pass None to use the average of all
distributions as the target distribution.

Returns The quantile normalized data. If data was passed as a dict, then a dict with the same keys
is returned.

Return type 2d numpy array, or dict of 1d numpy array
Notes
This function is nan-safe. As long as each column of the input data contains the same number of nan’s, nan’s

will only get averaged with other nan’s, and they will get substituted back into their original positions. See the
Examples section for an example of this.

Examples
>>> import numpy as np
>>> from lib5c.algorithms.gnorm import gnorm
>>> gnorm(np.array ([[5, 4, 31,
[21 1’ 4][
[3, 4, 61,
4, 2, 811))
array ([[5.66666667, 4.66666667, 2. 1,

(continues on next page)

98 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

[2. , 2. , 3. 1,
[3. , 4.66666667, 4.66666667],
[4.66666667, 3. , 5.66666667]1])

>>> gnorm(np.array ([ [ 5, np.nan, 31,

[ 2, 1, 41,
[np.nan, 4, 6],
[ 4, 2, np.nanl]))

array ([[5 , nan, 2. 1,

[2. , 2. , 3.33333333],
[ nan, 5. , 5. 1,
[3.33333333, 3.33333333, nan]])

>>> gnorm(np.array ([ [ 5, np.nan, 31,

[ 2, 1, 41,
[np.nan, 4, 6],
[ 4, 2, np.nan]]), reference_index=1)

array([[ 4., nan, 1.7,

[ 1., 1., 2.1,

[nan, 4., 4.7,

[ 2., 2., nanl])
>>> res qgqnorm ({'A': [5, 2, 3, 471,
'B': [4, 1, 4, 21,

c.. 'c': [3, 4, 6, 81})

>>> list (sorted(res.items()))

[("A', array([5.66666667, 2. , 3. , 4.66666667])),
('B', array([4.66666667, 2. , 4.66666667, 3. 1)),
('c', array([2. , 3. , 4.66666667, 5.66666667])) ]

>>> res gnorm ({'A': [5, 2, 3, 41,

'B': [4, 1, 4, 21,

S '‘c': [3, 4, 6, 81}, reference_index='C")

>>> list (sorted(res.items()))

[('A', array([8., 3., 4., 6.1)),

('B', array([6., 3., 6., 4.1)),

('c', array([3., 4., 6., 8.1))]
>>> res gqnorm ({'A': [5, 2, 3, 41,
'B': [4, 1, 4, 21,

C '‘c': [3, 4, 6, 8]}, reference_index='C', tie='average')

>>> list (sorted(res.items()))

[('A', array([8., 3., 4., 6.1)),

('B', array ([7., 3., 7., 4.1)),

('c', array([3., 4., 6., 8.1))]
lib5c.algorithms.gnorm.gnorm_counts_superdict (counts_superdict, primermap,
tie="lowest’,  regional=False, condi-

tion_on=None, reference=None)
Convenience function for quantile normalizing a counts superdict data structure.

Parameters

* counts_superdict (Dict [Dict [np.ndarray]])— The keys of the outer dict are
replicate names, the keys of the inner dict are region names, the values are square symmetric
arrays of counts for the specified replicate and region.

* primermap (Dict [str, List([Dict[str, Any]]])-The primermap describing
the loci whose interaction counts are described in the counts_superdict.

e tie({'lowest', 'average'})—Pass 'lowest' to setall tied entries to the value

6.1. lib5c package 99




lib5¢c Documentation, Release 0.6.1

of the lowest rank. Pass 'average"' to set all tied entries to the average value across the
tied ranks.

* regional (bool) — Pass True to quantile normalize regions separately. Pass False to
quantile normalize all regions together.

* condition_on (Optional[str]) — Pass a string key into the inner dicts of
primermap to condition on that quantity. Current limitations: only works with
regional=True and can only condition with exact equality (does not support condi-
tioning on strata of a quantity). Pass None to not do conditional quantile normalization.

* reference (Optional [str]) — Pass a string key into the counts_superdict to
indicate a replicate that should be used as a reference distribution to quantile normalize to.

Returns The keys of the outer dict are replicate names, the keys of the inner dict are region names,
the values are square symmetric arrays of the quantile normalized counts for the specified repli-
cate and region.

Return type Dict[Dict[np.ndarray]]

lib5c.algorithms.gnorm.qgnorm_£fast (data, reference_index=None)

Quantile normalizes a data set.

Simpler, faster implementation compared to lib5c.algorithms.gnorm(), but only supports
tie="'lowest ' behavior and only takes an np.ndarray as input. This approach was developed and timed
in this repsitory.

Parallelizable if data is a 2d  np.ndarray; see lib5c.algorithms.gnorm.
gnorm_fast_parallel().

Parameters

* data (np.ndarray) - Two dimensional, with the columns representing the replicates to
be qnormed. Quantile normalization will performed on the columns of data.

*» reference_index (int or str, optional)- Passa column index to serve as a
reference distribution. Pass None to use the average of all distributions as the target distri-
bution.

Returns The quantile normalized data.

Return type np.ndarray

Notes
This function is nan-safe. As long as each column of the input data contains the same number of nan’s, nan’s

will only get averaged with other nan’s, and they will get substituted back into their original positions. See the
Examples section for an example of this.

Examples

>>> import numpy as np
>>> from lib5c.algorithms.gnorm import gnorm_fast

>>> gnorm_fast (np.array ([[5, 4, 31,
(2, 1, a1,
[3, 4, 61,
(4, 2, 811))
array ([[5.66666667, 4.66666667, 2. 1,

(continues on next page)

100

Chapter 6. lib5c



https://bitbucket.org/creminslab/qnorm-sandbox/

lib5¢c Documentation, Release 0.6.1

(continued from previous page)

[2. , 2. , 3. 1,
[3. , 4.66666667, 4.66666667],
[4.66666667, 3. , 5.66666667]1171)
>>> gnorm_fast (np.array ([ [ 5, np.nan, 31,
[ 2, 1, 47,
[np.nan, 4, 6],
[ 4, 2, np.nanl]))
array ([[5 , nan, 2. 1,
[2. , 2. , 3.33333333],
[ nan, 5. , 5. 1,
[3.33333333, 3.33333333, nan]])
>>> gnorm_fast (np.array ([[ 5, np.nan, 31,
[ 2, 1, 41,
[np.nan, 4, 6],
[ 4, 2, np.nan]]), reference_index=1)
array([[ 4., nan, 1.7,
r1., 1., 2.1,
[nan, 4., 4.]
[ ]

lib5c.algorithms.gnorm.gnorm_fast_parallel (data, reference_index=None)

Quantile normalizes a data set.

Simpler, faster implementation compared to lib5c.algorithms.gnorm(), but only supports
tie="'lowest ' behavior and only takes an np.ndarray as input. This approach was developed and timed
in this repsitory.

Parallelizable if data is a 2d  np.ndarray; see lib5c.algorithms.gnorm.
gnorm_fast_parallel().

Parameters

* data (np.ndarray) - Two dimensional, with the columns representing the replicates to
be gqnormed. Quantile normalization will performed on the columns of data.

*» reference_index (int or str, optional)- Passa column index to serve as a
reference distribution. Pass None to use the average of all distributions as the target distri-
bution.

Returns The quantile normalized data.

Return type np.ndarray

Notes
This function is nan-safe. As long as each column of the input data contains the same number of nan’s, nan’s

will only get averaged with other nan’s, and they will get substituted back into their original positions. See the
Examples section for an example of this.

Examples

>>> import numpy as np
>>> from lib5c.algorithms.gnorm import gnorm_fast
>>> gnorm_fast (np.array ([[5, 4, 31,

(continues on next page)

6.1. lib5c package 101



https://bitbucket.org/creminslab/qnorm-sandbox/

lib5¢c Documentation, Release 0.6.1

(continued from previous page)

(2, 1, 41,
[3, 4, 61,
(4, 2, 811))
array ([[5.66666667, 4.66666667, 2. 1,
[2. , 2. , 3. 1,
[3. , 4.66666667, 4.66666667],
[4.66666667, 3. , 5.66666667]1])
>>> gnorm_fast (np.array ([ [ 5, np.nan, 31,
[ 2y 1, 41,
[np.nan, 4, 61,
[ 4, 2, np.nanl]))
array ([[5 , nan, 2. 1,
[2. , 2. , 3.33333333],
[ nan, 5. , 5. 1,
[3.33333333, 3.33333333, nan]])
>>> gnorm_fast (np.array ([ [ 5, np.nan, 31,
[ 2y 1, 41,
[np.nan, 4, 61,
[ 4, 2, np.nanl]]), reference_index=1)
array ([ ,

lib5c.algorithms.gnorm.gnorm_parallel (data, tie="lowest’, reference_index=None)

Quantile normalizes a data set.
Parallelizable if data is a 2d np.ndarray; see 1ib5c.algorithms.gnorm.gnorm_parallel ().
Parameters

* data (2d numeric structure, or dict of 1d numeric structure) —
Anything that can be cast to array. Should be passed as row-major. Quantile normaliza-
tion will performed on the columns of data.

e tie({'lowest', 'average'}, optional)-Pass 'lowest' to set all tied en-
tries to the value of the lowest rank. Pass 'average' to set all tied entries to the average
value across the tied ranks.

* reference_index (int or str, optional)-Ifdata isarow-major array, pass
a column index to serve as a reference distribution. If data is a dict, pass a key of that
dict that should serve as the reference distribution. Pass None to use the average of all
distributions as the target distribution.

Returns The quantile normalized data. If data was passed as a dict, then a dict with the same keys
is returned.

Return type 2d numpy array, or dict of 1d numpy array

Notes

This function is nan-safe. As long as each column of the input data contains the same number of nan’s, nan’s
will only get averaged with other nan’s, and they will get substituted back into their original positions. See the
Examples section for an example of this.

102

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

Examples

>>> import numpy as np

>>> from lib5c.algorithms.gnorm import gnorm

>>> gnorm(np.array ([[5, 4, 31,

[2, 1, a1,
[3, 4, 6],
[4, 2, 811))
array ([[5.66666667, 4.66666667, 2. 1,
[2. , 2. , 3. 1,
[3. , 4.66666667, 4.66666667],
[4.66666667, 3. , 5.66666667]17])

>>> gnorm (np.array ([ [ 5, np.nan, 31,

[ 2, 1, 417,
[np.nan, 4, 61,
[ 4, 2, np.nanl]))

array ([[5 , nan, 2. 1,

[2. , 2. , 3.333333331,
[ nan, 5. , 5. 1,
[3.33333333, 3.33333333, nan]])

>>> gnorm(np.array ([ [ 5, np.nan, 371,

[ 2, 1, 41,
[np.nan, 4, 61,
[ 4, 2, np.nan]]), reference_index=1)

array ([[ 4., nan, 1.1,

[ 1., 1., 2.1,

[nan, 4., 4.7,

[ 2., 2., nan]ll])
>>> res = gnorm({'A': [5, 2, 3, 4],
'B': [4, 1, 4, 21,

. 'c': [3, 4, 6, 81})

>>> list (sorted(res.items()))

[('"A', array([5.66666667, 2. , 3. , 4.66666667])),
('B', array([4.66666667, 2. , 4.66666667, 3. 1)),
('C', array([2. , 3. , 4.66666667, 5.66666667])) ]

>>> res = gnorm({'A': [5, 2, 3, 41,

'B': [4, 1, 4, 21,

C. '‘c': [3, 4, 6, 81}, reference_index='C")

>>> list (sorted(res.items()))

[('A', array([8., 3., 4., 6.1)),

('B', array([6., 3., 6., 4.1)),

('c', array([3., 4., 6., 8.1))]
>>> res = gnorm({'A': [5, 2, 3, 4],
'B': [4, 1, 4, 21,

C '‘c': [3, 4, 6, 81}, reference_index='C', tie='average')

>>> list (sorted(res.items()))

[("A', array([8., 3., 4., 6.1)),

('B'", array ([7., 3., 7., 4.1)),
('c', array([3., 4., 6., 8.1))]

lib5c.algorithms.spline_normalization module

Module for fitting b-splines to 5C counts data as a method of bias correction.

6.1. lib5c package

103




lib5¢c Documentation, Release 0.6.1

class lib5c.algorithms.spline_normalization.DiscreteBivariateEmpiricalSurface (xs,
ys,
. z8)
Bases: object
ev(x,y)

lib5c.algorithms.spline_normalization.fit_spline (counts_list, primermap, bias_factor,

knots=10, asymmetric=False)
Fits a 2-D cubic b spline surface to the counts data as a function of the specified upstream and downstream bias

factors.
Parameters

e counts_list (List[Dict[str, np.ndarray]]) — The counts data to fit the
splines with.

* primermap (Dict [str, List[Dict[str, Any]]])-The primermap describing
the loci. The bias_factor must be a key of the inner dict.

* bias_factor (str) - The bias factor to fit the model with.

* knots (Optional [int])— The number of knots to use for the spline. If the bias factor
is discrete, pass O to use an empirical discrete surface instead of a spline.

* log (Optional [bool])—Pass true to fit the spline to logged data.

* asymmetric (Optional [bool])— Pass True to iterate over only the upper triangular
entries of the counts matrices. The default is False, which iterates over the whole counts
matrices.

Returns List[Dict[str, np.ndarray]]] The first element of the tuple is the spline surface fit to the
data. The second element contains the values of the spline surface evaluated at each point in the
original counts dict. The third element contains the bias-corrected counts dicts.

Return type Tuple[LSQBivariateSpline, Dict[str, np.ndarray],

lib5c.algorithms.spline_normalization.iterative_spline_ normalization (counts_list,
exp_list,
primermap,
bias_list,
max_iter=100,
eps=0.0001,
knots=10,
log=True,
asym-
met-
ric=False)

Convenience function for iteratively applying a set of spline normalization steps to a set of counts dicts.
Parameters

* counts_list (List[Dict[str, np.ndarray]])— Alistofobserved counts dicts
to normalize.

* exp_list(List[Dict[str, np.ndarray]])- Alistof expected counts dicts cor-
responding to the counts dicts in counts_list.

e primermap (Dict[str, List[Dict[str, Any]]]) — Primermap or pixelmap
describing the loci in this region.

e bias_list (List[str]) — A list of bias factors to remove from the counts. These
strings must match metadata keys in primermap. That is to say, if bias_list is

104 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

['length'] then we expect primermap[region] [1] ['length'] to be a num-
ber representing the length of the i th fragment in the region specified by region. If
multiple bias factors are specified, the algorithm will iteratively remove all of them from the
data.

* max_iter (int)— The maximum number of iterations when iterating between bias fac-
tors.

* eps (float)— When the relative change in all models drops below this value convergence
is declared.

* knots (Union[int, List[int]]) — Specifies the number of knots to put into the
splines. Pass a single int to use the same number of knots in each model. Pass a list of ints
of length equal to the length of bias_1list to use knots [i] knots for the bias factor
named bias_list [1i]. If a bias factor is discrete, pass O for its knot number to use an
empirical discrete surface instead of a spline.

* log (bool) — Pass True to fit the splines to log-scale data, reducing the effects of outliers.

* asymmetric (bool) — Pass True to construct models using only the upper-triangular
elements of the counts matrices, which can lead to asymmetric models. By default, the
algorithm iterates over all elements of the counts matrices, enforcing symmetry in the bias
models but incurring some redundancy in the actual counts information.

Returns List[Dict[str, np.ndarray]], List[Dict[str, np.ndarray]]] The first element of the tuple is a
dict mapping the bias factors specified in bias_11ist to BivariateSpline instances. The second
element in the tuple is a dict mapping the bias factors specified in bias_1list to counts dicts
containing the evaluations of the spline fit to that bias factor at each point in the list of input
counts dicts. The third element of the tuple is the normalized list of counts.

Return type Tuple[Dict[str, scipy.interpolate.BivariateSpline],

lib5c.algorithms.thresholding module

lib5c.algorithms.thresholding.color confusion (d)
Extract the across-condition color confusion matrix.

Parameters d (Dataset) — Dataset processed by two_way_thresholding().
Returns The 2x2 confusion matrix.
Return type np.ndarray

lib5c.algorithms.thresholding.concordance_confusion (d)
Extract the within-condition concordance confusion matrices.

Parameters d (Dataset) — Dataset processed by two_way_thresholding().
Returns The keys are condition names, the values are the 2x2 confusion matrices.
Return type dict

lib5c.algorithms.thresholding.count_clusters (d)
Extract the final cluster counts.

Parameters d (Dataset) — Dataset processed by two_way_thresholding() called with re-
port_clusters=True.

Returns The keys are the color names as strings, the values are integers representing the cluster
counts.

Return type dict

6.1. lib5c package

105



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.thresholding.filter_near_diagonal (df, distance=24000, drop=True)
Drops rows from df where its ‘distance’ column is less than k.

Dropping occurs in-place.
Parameters
e df (pd.DataFrame)— Must have a ‘distance’ column.
* distance (int) - Threshold for distance (in bp).

* drop (bool) — Pass True to drop the filtered rows in-place. Pass False to return an index
subset for the filtered rows instead.

lib5c.algorithms.thresholding.kappa (d)
Compute the Cohen’s kappa values between the replicates of each condition.

Parameters d (Dataset) — Dataset processed by two_way_thresholding().
Returns The keys are condition names, the values are the kappa values.
Return type dict

lib5c.algorithms.thresholding.label_connected_components (colors, color)
Labels the connected components of a specific loop color.

Parameters
* colors (np.ndarray with string dtype)— The matrix of colors.
e color (str)— The color to label.

Returns Same size and shape as colors, entries are ints which are the labels

Return type np.ndarray

Examples

>>> colors = np.array([['a', 'a', 'b', 'a']
[ L} a L} , L} a L} , L} b L} , L} b L} J
[ L} b L} , L} b L} , L} b L} , L} a L} ]
a a'l
s

14

’

1)

['a', 'b', 'a', 'a'

>>> print (label_connected_components (colors, 'a'))
[[1 1 0 2]

[1 1 0 0]

[0 0 0 3]

[2 0 3 311

lib5c.algorithms.thresholding.size_filter (calls, threshold)
Removes calls which are in connected components smaller than a threshold.

Parameters

e calls (np.ndarray)— Boolean matrix of calls.

* threshold (int)— Connected components smaller than this will be removed.
Returns The filtered calls.

Return type np.ndarray

106 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Examples

>>> calls

>>> gsize_filter (calls, 3)
array ([[ True, True, False, False]
[ True, True, False, False],
[False, False, False, False],
[False, False, False, Falsel]])

= np.array([[ True, True, False, True
[ True, True, False, False
[False, False, False, True
[ True, False, True, True

o~

)

’

lib5c.algorithms.thresholding.two_way_thresholding (pvalues_superdict,

primermap, conditions=None,
significance_threshold=1e-15,
bh_fdr=False, two_tail=False,

concordant=False, dis-
tance_threshold=24000,

size_threshold=3, back-
ground_threshold=0.6, re-

port_clusters=True)

All-in-one heavy-lifting function for thresholding.

Parameters

pvalues_superdict (dict of dict of np.ndarray) — The p-values to
threshold.

primermap (primermap) — The primermap associated with the pvalues_superdict.

conditions (I1ist of str, optional)- The list of condition names. Pass None
to skip condition comparisons.

significance_threshold (float) — The p-value or g-value to threshold signifi-
cance with.

bh_f£dr (bool) — Pass True to apply multiple testing correction (BH-FDR) before check-
ing the significance_threshold.

two_tail (bool) - If bh_fdr=True, pass True here to perform the BH-FDR on two-
tailed p-values, but only report the significant right-tail events as loops. Note that two-tailed
p-values are only accurate if p-values were called using a continuous distribution.

concordant (bool)—Pass True to report only those interactions which are significant in
all replicates in each condition. Pass False to combine evidence from all replicates within
each condition instead.

distance_threshold (int) — Interactions with interaction distance (in bp) shorter
than this will not be called.

size_threshold (int) — Interactions within connected components smaller than this
will not be called.

background_threshold(float, optional)-Thep-value threshold to use to call
a background loop class. Pass None to skip calling a background class.

report_clusters (bool) — Pass True to perform a second pass of connected compo-
nent counting at the very end, reporting the numbers of clusters in each color category to the
returned Dataset.

Returns The results of the thresholding.

6.1. lib5c package

107




lib5¢c Documentation, Release 0.6.1

Return type Dataset

lib5c.algorithms.trimming module

Module for trimming low or “dead” 5C fragments away from 5C datasets.

lib5c.algorithms.trimming.trim_counts (counts, indices)
Removes specified rows and columns from the counts matrix.

Parameters
* counts (np.ndarray) - The square symmetric counts matrix to trim.
* indices (Iterable[int])— The indices to wipe

Returns The trimmed counts matrix.

Return type np.ndarray

lib5c.algorithms.trimming.trim_counts_superdict (counts_superdict, indices)
Applies trim_counts () to each replicate in a counts_superdict.

Parameters

* counts_superdict (Dict[str, np.ndarray]) - The keys are replicate names,
the values are the counts for that rep.

* indices (Iterable[int]) - The indices to trim.
Returns The keys are replicate names, the values are the trimmed counts for that rep.
Return type Dict[str, np.ndarray]

lib5c.algorithms.trimming.trim_primers (primermap, counts_superdict, min_sum=100.0,

min_frac=0.5)
Trim a primermap using counts information from many replicates.

Parameters

* primermap (List [Dict[str, Any]]) — The primermap to trim. See lib5c.
parsers.primers.get_primermap ().

* counts_superdict (Dict[str, np.ndarray])— The keys are replicate names,
the values are the counts for that rep.

e min_sum (Optional [float ])— Primers with a total cis sum lower than this value will
be trimmed.

* min_ frac (Optional[float]) - Primers with fewer than this fraction of nonzero in-
teractions out of all their finite interactions will be trimmed.

Returns The first element is the trimmed primermap, the second is the set of indices of the original
primermap which were removed.

Return type Tuple[List[Dict[str, Any]], Set[int]]

lib5c.algorithms.trimming.wipe_counts (counts, indices, wipe_value=nan)
Wipes specified rows and columns of the counts matrix with a specified value.

Parameters
* counts (np.ndarray) — The square symmetric counts matrix to wipe.
* indices (Iterable[int]) - The indices of the rows and columns to wipe.

* wipe_value (Optional [float])— The value to wipe the selected indices with.

108 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

lib5c.algorithms.trimming.wipe_counts_superdict (counts_superdict,

Returns The wiped counts matrix.

Return type np.ndarray

indices,
wipe_value=nan)

Applies wipe_counts () to each replicate in a counts_superdict.

Parameters

* counts_superdict (Dict[str,

np.ndarray]) — The keys are replicate names,

the values are the counts for that rep.

* indices

(Iterable[int]) - The indices to wipe

* wipe_value (Optional [float])— The value to wipe the selected indices with.

Returns The keys are replicate names, the values are the wiped counts for that rep.

Return type Dict[str, np.ndarray]

Module contents

Subpackage containing algorithms for 5C data analysis.

Subpackage structure:

e 1ib5c.

lib5c.
1ib5c.
libb5c.
1ib5c.
1ib5c.

lib5c.

algorithms.
algorithms
algorithms.
algorithms.
algorithms.
algorithms.

algorithms.

5C interaction classes

1ib5c.
1lib5c.
1ib5c.
1ib5c.
1ib5c.
1ib5c.
libb5c.

algorithms.
algorithms.
algorithms.
algorithms.
algorithms.
algorithms.

algorithms.

lib5c.contrib package

Subpackages

lib5c.contrib.iced package

clustering - algorithms for clustering together SC interactions

.distributions - statistical modeling of 5C contact frequencies

filtering - binning, smoothing, etc.

correlation - pairwise correlations between replicates
determine bins - computing bins to tile 5C regions
donut_filters - “donut” expected model correction

enrichment - computing enrichments for genomic annotations between different

expected - building expected models for 5C data

express - “Express” normalization algorithms

knight_ruiz - Knight-Ruiz matrix balancing

outliers - finding and removing high spatial outliers in 5C contact matrices
gnorm - quantile normalization standardize distributions between replicates
spline_normalization - spline-based bias factor normalization

trimming - removing “dead” or low-count primers from SC datasets

6.1. lib5c package

109



lib5¢c Documentation, Release 0.6.1

Submodules

lib5c.contrib.iced.balancing module

Module for interfacing with the external iced Python package, which provides access to the ICED matrix balancing

algorithm.

lib5c.contrib

.iced.balancing.iced_balance_matrix (matrix, max_iter=3000, eps=0.0001,

norm="l1", imputation_size=0)

Convenience function wrapping the ICE_normalization function from the external i ced Python package,
which balances a counts matrix using the ICE algorithm.

Parameters

matrix (np.ndarray) — The counts matrix to balance.

max_iter (int) - The maxiumum number of iterations to try.

eps (float) - The relative size of error before declaring convergence.
norm({'11', '12'})— Whatnorm to use as a distance measure.

imputation_size (int)—Pass anint greater than O to replace NaN’s in the matrix with
a local median approximation. Pass 0 to skip imputation.

Returns The first element of the tuple is the balanced matrix. The second element is the bias vector.

Return type Tuple[np.ndarray, np.ndarray]

Module contents

lib5c.contrib.interlap package

Submodules

lib5c.contrib.interlap.util module

Module containing utilities for interfacing with InterLap objects from the external interlap Python package, which
provides efficient binary interval search for finding overlapping genomic features.

lib5c.contrib

.interlap.util.features_to_interlaps (features, chroms=None)

Converts feature dicts to InterLap objects.

Parameters

features (dict of list of dict) - The keys of the outer dict should be chro-
mosome names as strings. The values of the outer dict represent lists of features found on
that chromosome. The inner dicts represent individual genomic features, with at least the
following keys:

{

'chrom': str,
'start': int,
'end' : int

See 1ib5c.parsers.load_features () for more information.

110

Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

* chroms (list of str, optional)— To create InterLap objects for only specified
chromosomes, pass a list of their names. Pass None to create InterLap objects for all chro-
mosomes.

Returns The keys are chromosome names as strings, the values are InterLap objects containing all
features on the chromosome. The original feature dicts are saved in the data element of each
interval in the InterLap.

Return type dict of InterLap

lib5c.contrib.interlap.util.query_interlap (interlap, query_feature)
Searches an InterLap object to find features that overlap a given query feature.

Parameters

* interlap (InterLap) — The InterLap object to search. Each interval in the In-
terLap object must have a data element, see 1ib5c.contrib.interlap.util.
features_to_interlaps().

* query_feature (dict) — Dict representing the genomic region in which to search for
overlapping features. Must have at least the following keys:

{

'chrom': str,
'start': int,
'end' : int

Returns Each dict in the list represents a feature found in the InterLap object that overlaps the query
feature.

Return type list of dict

Module contents
lib5c.contrib.luigi package
Submodules
lib5c.contrib.luigi.config module

This module provides a single string literal that is used to represent the default tree pipeline configuration file. It also
provides a function to write this default configuration file to the disk.

libb5c.contrib.luigi.config.drop_config file()
Drops the default config file in the current directory.

lib5c.contrib.luigi.pipeline module

Module implementing one particular strategy for wiring together the luigi Task subclasses defined in 1ib5c.
contrib.luigi.tasks into a complete pipeline.

The pipeline is organized as a tree of Tasks, which matches perfectly with a tree of output directories. Each Task
in the tree inherits from the mixin class TreeMixin and defines a directory string parameter. This parame-
ter represents the output directory for that Task. Task classes can be reconstituted from directory strings via the
directory_to_task () function.

6.1. lib5c package 111



lib5¢c Documentation, Release 0.6.1

The directory_to_task () function uses the t able DictParameter of the TreeMixin, which maps user-selected
short names for parameterized Tasks to Task class names as well as detailed parameters. An example of an entry in
the tableis:

"bin_amean_20_8": ["MakeBinned", {"window_function": "amean",
"bin_width": 8000,
"window_width": 20000} ]

where the key, “bin_amean_20_8", is the user-selected short name for this particular parameterization of the Make-
Binned Task class, and the value is a list of two elements. The first element is the Task class name as a string (in this
case, MakeBinned, which extends 1ib5c.contrib.luigi.tasks.BinTask and mixes in TreeMixin). The
second element is a dict containing the parameters to construct the Task with. With this entry in the table, when a
folder named “bin_amean_20_8" occurs within the directory string, it will be interpreted as a MakeBinned Task with
the parameters specified in this table entry.

The upstream Task that a particular Task depends on (i.e., its parent in the tree) can also be reconstituted by splitting
off the last folder level in the directory string and calling directory_to_task () on what remains. This logic is
implemented in TreeMixin.preceding_task () which allows any Task in the tree to know what tasks precede
it in the pipeline.

TreeMixin also describes rep and out file_pattern parameters. Together with directory, these parameters
specify the exact output file of running a particular parameterized Task on one specific replicate, using the logic
implemented in TreeMixin.output ().

The pipeline is orchestrated by an overall WrapperTask called PipelineTask which stores the table and passes it
through to each TreeMixin Task. It also deduces the all_reps list (by peeking at the keys of RawCounts.
countsfiles using the luigi config file) and passes it through to each TreeMixin Task as well. It stores a list of
directory strings (representing leaf Tasks) in a tasks ListParameter. As a WrapperTask, it wraps all the leaf Tasks in
tasks and all replicates in all_reps as appropriate. The leaf Tasks in turn use their directory strings to figure
out what Tasks they depend on. In this way the entire tree of pipeline Tasks is created from just one PipelineTask.

class lib5c.contrib.luigi.pipeline.DetermineBins (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.DetermineBinsTask

Pipeline Task for DetermineBinsTask (the step which decides how to bin the 5C regions).

This Task is pre-wired to depend on the PrimeFile pipeline Task, and to write its output to an output folder called
bedfiles/.

output ()
Implementation of output (), pre-wired to write the output to the bedfiles/ folder.

Returns The Target of this Task.
Return type luigi.Target

requires ()
Implementation of requires (), pre-wired to depend on the PrimerFile pipeline Task.

Returns The Task that this Task depends on.
Return type luigi.Task

class libb5c.contrib.luigi.pipeline.JointExpressInnerTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.pipeline.JointInnerParallelMixin, 1lib5c.contrib.
luigi.pipeline.TreeMixin, 1ib5c.contrib.luigi.tasks.ExpressTask

Inner Task class for the MakeJointExpress JointTask.

class lib5c.contrib.luigi.pipeline.JointInnerMixin
Bases: object

112 Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

Mixin class for inner Tasks wrapped by JointTask.
The inner Task of a JointTask depends on the preceding Task’s output for all replicates.

This mixin provides a helper function _match_input () which subclasses can use to get a glob-based pattern
that matches all the input files for the Task which precedes this Task. CmdTasks inheriting from this mixin only
need to use this approach if they must describe all their input files using a single string (see JointExpressInner-
Task for an example). CmdTasks that can simply list the exact input files they depend on can use something
like:

[i.path for i in self.input ()]

See QnormInnerTask for an example of this second approach.

A basic implementation of requires () is provided here and should work in most cases, but Task classes
inheriting from JointInnerMixin must still define their own implementation of output ().

requires ()
Basic implementation of requires () for inner Tasks of a JointTask.

This basic implementation assumes that the inner Task depends on the locus file and the preceding Task
for each replicate in all_reps.

Subclasses may override this if they depend on more than just these inputs.
Returns The Tasks that this inner Task depends on.
Return type list of luigi.Task

class libbc.contrib.luigi.pipeline.JointInnerParallelMixin
Bases: 1ib5c.contrib.luigi.pipeline.JointInnerMixin

Mixin class providing a simple implementation of output () for Task classes inheriting from JointInnerMixin.

output ()
Simple implementation of output () for Task classes inheriting from JointInnerMixin.

This implemntation assumes that the output files are parallel to the input files (i.e., there is one for each
replicate and it can be obtained by interpolating rep into the outfile_pattern).

Returns The Targets of this inner Task.
Return type list of luigi.Target

class lib5c.contrib.luigi.pipeline.JointTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.pipeline.TreeMixin, luigi.task.WrapperTask

Mixin class for pipeline Tasks that operate on input from all replicates.

Tasks inheriting from JointTask become WrapperTasks, one of which can be created for each replicate, but each
of which will depend on the same inner Task which does the actual work. In terms of the overall pipeline flow,
this allows a piece of directory to map to a JointTask, which can be instantiated once for each replicate via
the rep kwarg of the TreeMixin. All the JointTask instances will depend on a single inner Task inheriting from
JointInnerMixin that actually does the work.

Tasks inheriting from JointTask must implement get_inner_task_class (), which should return a Task
class which inherits from JointInnerMixin and actually does the work.

Since get_inner_task_class () justreturns a Task class which must still be instantiated with the proper
parameters, JointTask provides an overrideable hook, get_inner_task_params () to allow Task classes
which inherit from JointTask to manually pass their parameters through to the inner Task. See MakeQnorm.
get_inner_task_params () for an example.

6.1. lib5c package 113



lib5¢c Documentation, Release 0.6.1

The related helper function get_inner_task_param_dict () helps to simplify this process by au-
tomatically passing through key TreeMixin parameters like table, directory, all_reps, and the
@visualizable visualization hook parameters.

get_inner task_class()

get_inner_ task_param dict ()
Constructs the complete dict of params for inner task instantiation.

Provides some important core defaults in the context of the tree pipeline, and injects whatever parameters
are returned by get_inner_task_params ().

This is a helper function - subclasses should not override this function and should override
get_inner_task_params () instead.

Returns The complete dict of params.
Return type dict

get_inner_ task_params ()
Hook to allow subclasses to supply extra parameters to their inner Tasks. Subclasses should override this
function.

Returns Extra parameters to be supplied to the inner task upon construction.
Return type dict

get_rep_index ()
Returns the index of the replicate this Task wraps the output for among all the replicates (in the order of
self.all_reps).

Returns The index of the replicate this Task wraps the output for among all the replicates (in the
order of self.all_reps).

Return type int
outfile pattern = <luigi.parameter.Parameter object>

output ()
Universal implementation of output () for JointTasks.

This implementation simply instantiates the inner Task and asks it for its outputs, returning the one that cor-
responds to the replicate of this JointTask. The assumption here is that the inner Task class’s output ()
will be a list whose elements correspond to the replicates in all_reps.

Returns The Target of this JointTask.
Return type luigi.Target
rep = <luigi.parameter.Parameter object>

requires ()
Universal implementation of requires () for JointTasks.

Simply put, the JointTask depends on its inner Task class, instantiated using the parameters obtained from
get_inner_task_params () viaget_inner_task_param_dict ().

Returns The Task instance of the inner Task that this WrapperTask depends on.
Return type luigi.Task

class lib5c.contrib.luigi.pipeline.MakeBinned (*args, **kwargs)
Bases: 1lib5c.contrib.luigi.pipeline.TreeMixin, 1ibbc.contrib.luigi.tasks.
BinTask

Pipeline Task class for the binning step.

114 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Unlike most countsfile-to-countsfile steps, the binning step needs to use two different locus Tasks as input: the
primerfile and the binfile. Therefore, this class must provide a custom implementation of requires () to
specify this.

bin_width = <luigi.parameter.IntParameter object>

requires ()
Depends on both the binfile (represented by a DetermineBins instance) and the primerfile (represented by
the PrimerFile instance) in addition to the preceding Task.

Returns The Tasks this Task depends on.
Return type tuple of luigi.Task

class libb5c.contrib.luigi.pipeline.MakeCrossVariance (*args, **kwargs)
Bases: 1lib5c.contrib.luigi.pipeline.TreeMixin, 1libbc.contrib.luigi.tasks.
CrossVarianceTask

Pipeline Task for the cross-replicate variance modeling step.
Even though this Task depends on multiple replicates, it is not implemented as a JointTask.

requires ()
Depends on the preceding Task for the same replicate (assumed to be the expected counts) and the Task
that precedes that Task (assumed to be the observed counts) for all replicates in this Task’s condition.

This Task’s condition is inferred to be the first condition in the comma-separated string parameter
conditions thatis a substring of rep. Other replicates match this condition if this condition is also a
substring of their replicate names.

Returns The Tasks this Task depends on. The first Task is the locus info Task, the second is the
expected Task for this replicate, and the remaining Tasks in the list are observed Tasks for all
replicates in the same condition as this replicate.

Return type list of luigi.Task

class lib5c.contrib.luigi.pipeline.MakeExpected (*args, **kwargs)
Bases: 1libbc.contrib.luigi.pipeline.PerRepSimplelreeMixin, 1ibbc.contrib.
luigi.tasks.ExpectedTask

Pipeline Task class for the expected modeling step. All functionality is handled by PerRepSimpleTreeMixin.

class lib5c.contrib.luigi.pipeline.MakeExpress (*args, **kwargs)
Bases: libbc.contrib.luigi.pipeline.PerRepSimplelTreeMixin, 1ibbc.contrib.
luigi.tasks.ExpressTask

Pipeline Task class for the express step. All functionality is handled by PerRepSimpleTreeMixin.

class lib5c.contrib.luigi.pipeline.MakeIced (*args, **kwargs)
Bases: libb5c.contrib.luigi.pipeline.PerRepSimplelTreeMixin, 1ibb5c.contrib.
luigi.tasks.IcedTask

Pipeline Task class for the ICED balancing step. All functionality is handled by PerRepSimpleTreeMixin.

class libb5c.contrib.luigi.pipeline.MakeInteractionScores (*args, **kwargs)
Bases: libb5c.contrib.luigi.pipeline.PerRepSimplelTreeMixin, 1ibbc.contrib.
luigi.tasks.InteractionScoreTask

Pipeline Task class for InteractionScoreTask. All functionality is handled by PerRepSimpleTreeMixin.

class lib5c.contrib.luigi.pipeline.MakeJointExpress (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.pipeline.JointTask

Outer wrapper pipeline JointTask for the joint express step.

6.1. lib5c package 115



lib5¢c Documentation, Release 0.6.1

get_inner_task_class ()
Points to JointExpressInnerTask, the inner Task for the joint express step.

Returns The inner Task class for this JointTask.

Return type luigi.Task
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
run ()

class lib5c.contrib.luigi.pipeline.MakeKR (*args, **kwargs)
Bases: 1libbc.contrib.luigi.pipeline.PerRepSimplelreeMixin, 1ibbc.contrib.
luigi.tasks.KnightRuizTask

Pipeline Task class for the Knight-Ruiz balancing step. All functionality is handled by PerRepSimpleTreeMixin.

class libb5c.contrib.luigi.pipeline.MakeLegacyPvaluesOne (*args, **kwargs)
Bases: 1libbc.contrib.luigi.pipeline.TreeMixin, 1ibbc.contrib.luigi.tasks.
LegacyPvaluesOneTask

Pipeline Task for an old version of the p-value calling step. Deprecated.

requires ()
Unlike the modern PvaluesTask which depends on obs, exp, and var, this old version only used the obs and
the exp.

class lib5c.contrib.luigi.pipeline.MakeLogged (*args, **kwargs)
Bases: lib5c.contrib.luigi.pipeline.PerRepSimplelTreeMixin, 1ib5c.contrib.
luigi.tasks.LogTask

Pipeline Task class for LogTask. All functionality is handled by PerRepSimpleTreeMixin.

class lib5c.contrib.luigi.pipeline.MakeObsMinusExp (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.pipeline.TreeMixin, 1ib5c.contrib.luigi.tasks.
SubtractTask

Pipeline Task class for the obs-exp step (analogous to the obs/exp step but for data that have already been
log-transformed).

requires ()
Depends on both the preceding Task (assumed to be the expected counts) and the Task that precedes that
Task (assumed to be the observed counts).

Returns The Tasks this Task depends on.
Return type tuple of luigi.Task

class libb5c.contrib.luigi.pipeline.MakeObsOverExp (*args, **kwargs)
Bases: libbc.contrib.luigi.pipeline.TreeMixin, 1ibbc.contrib.luigi.tasks.
DivideTask

Pipeline Task class for the obs/exp step.

requires ()
Depends on both the preceding Task (assumed to be the expected counts) and the Task that precedes that
Task (assumed to be the observed counts).

Returns The Tasks this Task depends on.
Return type tuple of luigi.Task

116 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

class lib5c.contrib.luigi.pipeline.MakePvalues (*args, **kwargs)
Bases: libbc.contrib.luigi.pipeline.TreeMixin, 1ib5c.contrib.luigi.tasks.
PvalueTask

Pipeline Task for the p-value calling step.

requires ()
Depends on three Tasks: the preceding Task (assumed to be the variance counts), the Task that precedes
that Task (assumed to be the expected counts) and the Task that precedes that Task (assumed to be the
observed counts).

Returns The Tasks this Task depends on.
Return type tuple of luigi.Task

class lib5c.contrib.luigi.pipeline.MakeQnorm (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.pipeline.JointTask

Outer wrapper pipeline JointTask for the qnorm step.
averaging = <luigi.parameter.BoolParameter object>
condition_on = <luigi.parameter.Parameter object>

get_inner task_class()
Points to QnormInnerTask, the inner Task for the qnorm step.

Returns The inner Task class for this JointTask.
Return type luigi.Task

get_inner_ task_params ()
Passes through all the parameters for the qnorm step.

Returns The parameters for the gnorm step.

Return type dict
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
reference = <luigi.parameter.Parameter object>
regional = <luigi.parameter.BoolParameter object>
run ()

class lib5c.contrib.luigi.pipeline.MakeQvalues (*args, **kwargs)
Bases: 1lib5bc.contrib.luigi.pipeline.PerRepSimpleTreeMixin, 1ibbc.contrib.
luigi.tasks.QvaluesTask

Pipeline Task class for the multiple testing correction step, which converts p-values to g-values. All functionality
is handled by PerRepSimpleTreeMixin.

Note that the thresholding step performs its own multiple testing correction when parameterized with
bh_fdr=True, so this step is never required.

class libbc.contrib.luigi.pipeline.MakeRaw (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.pipeline.PerRepSimpleTreeMixin, luigi.task.Task

Pipeline Task for performing the “raw” step of the pipeline.

This step doesn’t actually do anything, so it just copies over the input countsfile (which is actually represented
by a RawCounts Task) into the output directory tree. By having a separate step for this we guarantee that a) a
raw countsfile can be found with a predictable name (in agreement with the replicate names which are set by the

6.1. lib5c package 117



lib5¢c Documentation, Release 0.6.1

keys of RawCounts.countsfiles) and in a predictable spot in the output directory structure, and b) the
raw countsfile can be visualized using the same visualization hooks as any other step.

heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
run ()

class lib5c.contrib.luigi.pipeline.MakeRemoved (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.pipeline.PerRepSimpleTreeMixin, 1ibbc.contrib.
luigi.tasks.OutliersTask

Pipeline Task class for the high outlier removal step. All functionality is handled by PerRepSimpleTreeMixin.

class lib5c.contrib.luigi.pipeline.MakeSmoothed (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.pipeline.PerRepSimpleTreeMixin, 1ib5c.contrib.
luigi.tasks.SmoothTask

Pipeline Task class for the smoothing step. All functionality is handled by PerRepSimpleTreeMixin.

class lib5c.contrib.luigi.pipeline.MakeSpline (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.pipeline.PerRepSimpleTreeMixin, 1ib5c.contrib.
luigi.tasks.SplineTask

Pipeline Task class for the explicit spline normalization step. All functionality is handled by PerRepSimple-
TreeMixin.

class lib5c.contrib.luigi.pipeline.MakeThreshold (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.pipeline.JointInnerMixin, 1libbc.contrib.luigi.
pipeline.TreeMixin, 1ib5c.contrib.luigi.tasks.ThresholdTask

Pipeline Task for the loop call thresholding step.

This Task is implemented as if it were the inner Task of a JointTask, but since there is only one ThresholdTask
for all replicates, it does not need a corresponding WrapperTask to wrap itself across replicates.

It gets its implementation of requires () from JointInnerMixin, which correctly depends on the output of the
preceding Task (assumed to be the p-values) across all_reps.

output ()
Specifies the output file locations for the thresholding step.

These locations are controlled by the outfile_pattern (countsfile of final cluster assignments),
dataset_outfile (table of complete results), and kappa_confusion_outfile (text file of sum-
mary information and concordance metrics).

Returns The Targets resulting from this Task.
Return type tuple of luigi.Target

class lib5c.contrib.luigi.pipeline.MakeVariance (*args, **kwargs)
Bases: 1libbc.contrib.luigi.pipeline.TreeMixin, 1ib5c.contrib.luigi.tasks.
VarianceTask

Pipeline Task for the variance modeling step.

requires ()
Depends on both the preceding Task (assumed to be the expected counts) and the Task that precedes that
Task (assumed to be the observed counts).

Returns The Tasks this Task depends on.
Return type tuple of luigi.Task

118 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

class lib5c.contrib.luigi.pipeline.PerRepSimpleTreeMixin
Bases: 1ib5c.contrib.luigi.pipeline.TreeMixin

Mixin class that adds the most common implementation of requires () to TreeMixin.

Most pipeline Tasks depend on two inputs: a primer or binfile, and the immediately preceding countsfile for the
rep of the child Task.

Pipeline Tasks that depend on more than one countsfile (e.g., p-value calling), or all replicates (e.g., threshold-
ing) cannot use this mixin, and instead must inherit from TreeMixin and define their own implementation of
requires ().

requires ()

class lib5c.contrib.luigi.pipeline.PipelineTask (*args, **kwargs)
Bases: luigi.task.WrapperTask

Overall wrapper Task that orchestrates the entire pipeline.

Running this Task runs every leaf Task in the tasks ListParameter as well as all parent Tasks needed to get
from the root (raw input countsfiles) to those leaves.

Tasks should be specified in the tasks ListParameter in the form of directory strings to the leaf Tasks (final
step in a chain of Tasks).

Individual folders in the directory strings in tasks will be converted to properly parameterized Task instances
via the table DictParameter, which should map folder names to lists of two items: the appropriate pipeline
Task class name as a string, and a dict of parameters to instantiate that Task class with. See the module docstring
for an example.

The leaf Tasks will automatically be parallelized across all_reps unless they are MakeThreshold (the Task
class for which rep is always None).

requires ()
Deduces all_reps and wraps all the leaf Tasks in tasks over all replicates if appropriate, passing
though table and all_reps.

table = <luigi.parameter.DictParameter object>
tasks = <luigi.parameter.ListParameter object>

class lib5c.contrib.luigi.pipeline.PrimerFile (*args, **kwargs)
Bases: luigi.task.ExternalTask

Pipeline Task for finding the input primerfile on the disk.

output ()
Implementation of output ().

Returns A LocalTarget pointing to this Task’s primerfile parameter, which should be the
location of the input primerfile on the disk.

Return type luigi.Target
primerfile = <luigi.parameter.Parameter object>

class lib5c.contrib.luigi.pipeline.QnormInnerTask (*args, **kwargs)
Bases: I1ib5c.contrib.luigi.pipeline.JointInnerParallelMixin, lib5c.contrib.
luigi.pipeline.TreeMixin, 1ib5c.contrib.luigi.tasks.QnormTask

Inner Task class for the MakeQnorm JointTask.

class lib5c.contrib.luigi.pipeline.RawCounts (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.pipeline.TreeMixin, luigi.task.ExternalTask

6.1. lib5c package 119



lib5¢c Documentation, Release 0.6.1

Pipeline Task for finding the raw input countsfiles on the disk.

This step is not resolved through the table, but instead uses its own DictParameter countsfiles which
should map replicate names to the paths of the raw input countsfiles on the disk.

countsfiles = <luigi.parameter.DictParameter object>
outfile_pattern = <luigi.parameter.Parameter object>

output ()
Looks up the location of the countsfile for this replicate using the countsfiles DictParameter and
returns a LocalTarget pointing to it.

Returns The Target corresponding to the raw input countsfile represented by this Task.
Return type luigi.Target
rep = <luigi.parameter.Parameter object>

class libb5c.contrib.luigi.pipeline.TreeMixin
Bases: object

Core mixin class for pipeline Tasks. See the module docstring for more details.

If mixed with a 1ib5c.contrib.luigi.tasks.CmdTask subclass, the only luigi function that the de-
rived class needs to implement is requires ().

all_reps = <luigi.parameter.ListParameter object>
directory = <luigi.parameter.Parameter object>

locus_info_task()
Returns the Task instance corresponding to the primerfile or binfile needed by this Task.

Returns The Task instance corresponding to the primerfile or binfile needed by this Task.
Return type luigi.Task
outfile pattern = <luigi.parameter.Parameter object>

output ()
Returns the luigi Target corresponding to the output file that is the direct result of running this Task.

Returns The Target corresponding to the output file that is the direct result of running this Task.
Return type luigi.Target

preceding_task (rep=None)
Returns the Task instance that precedes this Task.

Parameters rep (str, optional) — The replicate name to parameterize the parent Task
with. Pass None if the Task is not a per-rep Task.

Returns The Task instance that precedes this Task.
Return type luigi.Task

rep = <luigi.parameter.Parameter object>

table = <luigi.parameter.DictParameter object>

lib5c.contrib.luigi.pipeline.directory_to_task (directory, table, all_reps, **kwargs)
Converts a directory to a TreeMixin Task class instance, using a provided table.

Parameters

* directory (str)— The directory identifying this task.

120 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

* table (Dict[str, Tuple[str, dict[str, Any]]])— A map from directory
parts to (Task class name, param dict) tuples.

* all_reps (List[str])— Alistof all the replicates.

* kwargs (additional keyword arguments)— Will be passed to the new Task in-
stance. The most common kwarg is ‘rep’.

Returns The specified Task instance.

Return type luigi.Task

lib5c.contrib.luigi.tasks module

Provides luigi Task subclasses that wrap the libSc command line functions.

class lib5c.contrib.luigi.tasks.BinTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.FilteringTask

Task class for binning fragment-level countsfiles into binned countsfiles.
Wraps the 1ib5¢c bin command line command.
Input/output specification:

e self.input () [0]: the bin .bed file

e self.input () [1]: the primer .bed file

* self.input () [2]: the input fragment-level countsfile

e self.output (): the resulting countsfile of binned observed values
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
run ()

class libb5c.contrib.luigi.tasks.CmdTask (*args, **kwargs)
Bases: 1luigi.task.Task

Luigi Task parent class for Tasks whose run () behavior should be to execute a specific command on the
command line.

Subclasses must implement _construct_cmd_string (), which should return a string corresponding to
the command to be run on the command line.

If the bsub Python package is installed, the command will be executed using the bsub scheduling system, and
the caller will wait for the job corresponding to the task to complete.

If the bsub Python package is not installed, the command will be simply executed via subprocess.

run ()
Generic run () implementation for command line Tasks.

class libb5c.contrib.luigi.tasks.CrossVarianceTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.VarianceTask

Task class for computing variance estimates using the cross-replicate variance method.
Wraps the 1ib5¢c variance command line command called with —s/--source cross_rep.
Input/output specification:

e self.input () [0]: the primer or bin .bed file

6.1. lib5c package 121



lib5¢c Documentation, Release 0.6.1

e self.input () [1]: the input expected countsfile
* self.input () [2:]: the input observed countsfiles for each replicate

* self.output (): the resulting countsfile of variance estimates

This class defines a condit ions Parameter which should be used to ensure that the input observed countsfiles

passed in self.input () [2:] all belong to the same condition. This logic is not implemented here.
conditions = <luigi.parameter.Parameter object>

source = <luigi.parameter.Parameter object>

class lib5c.contrib.luigi.tasks.DetermineBinsTask (*args, **kwargs)

Bases: 1ib5c.contrib.luigi.tasks.CmdTask
Task class for determining bin locations.
Wraps the 1ib5c determine-bins command line command.
Input/output specification:
e self.input (): the input primer .bed file
* self.output (): the resulting bin .bed file

bin width = <luigi.parameter.IntParameter object>

class lib5c.contrib.luigi.tasks.DistributionTask (*args, **kwargs)

Bases: 1ib5c.contrib.luigi.tasks.CmdTask
dist = <luigi.parameter.Parameter object>
log = <luigi.parameter.BoolParameter object>

mode = <luigi.parameter.Parameter object>

class libb5c.contrib.luigi.tasks.DivideTask (*args, **kwargs)

Bases: 1ib5c.contrib.luigi.tasks.CmdTask
Task class for dividing one countsfile by another.
Wraps the 1ib5c divide command line command.
Input/output specification:

e self.input () [0]: the primer or bin .bed file

e self.input () [1]: the dividend (countsfile to divide)

e self.input () [2]: the divisor (countsfile to divide by)

* self.output (): the quotient (countsfile resulting from the division)
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>

run ()

class lib5c.contrib.luigi.tasks.ExpectedTask (*args, **kwargs)

Bases: 1ib5c.contrib.luigi.tasks.CmdTask
Task class for computing expected models.

Wraps the 1ib5c expected command line command.
Input/output specification:

e self.input () [0]: the primer or bin .bed file

122

Chapter 6

. lib5c



lib5¢c Documentation, Release 0.6.1

e self.input () [1]: the input observed countsfile

e self.output (): the resulting countsfile of expected values
degree = <luigi.parameter.IntParameter object>
donut = <luigi.parameter.BoolParameter object>
donut_frac = <luigi.parameter.FloatParameter object>
exclude_near_diagonal = <luigi.parameter.BoolParameter object>
global expected = <luigi.parameter.BoolParameter object>
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
log donut = <luigi.parameter.BoolParameter object>
log_transform = <luigi.parameter.Parameter object>
lowess = <luigi.parameter.BoolParameter object>
lowess_frac = <luigi.parameter.FloatParameter object>
max_with_lower_left = <luigi.parameter.BoolParameter object>
min_exp = <luigi.parameter.FloatParameter object>
monotonic = <luigi.parameter.BoolParameter object>
P = <luigi.parameter.IntParameter object>
plot_outfile = <luigi.parameter.Parameter object>
plot_outfile hexbin = <luigi.parameter.BoolParameter object>
plot_outfile kde = <luigi.parameter.BoolParameter object>
powerlaw = <luigi.parameter.BoolParameter object>
regression = <luigi.parameter.BoolParameter object>
run ()
w = <luigi.parameter.IntParameter object>

class lib5c.contrib.luigi.tasks.ExpressTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.CmdTask

Task class for applying Express bias correction to countsfiles.
Wraps the 1ib5c express command line command.
Input/output specification:

e self.input () [0]: the primer or bin .bed file

e self.input () [1]: the input countsfile

* self.output (): the resulting Express-normalized countsfile
bias = <luigi.parameter.BoolParameter object>
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>

run ()

6.1. lib5c package 123



lib5¢c Documentation, Release 0.6.1

class lib5c.contrib.luigi.tasks.FilteringTask (*args, **kwargs)

Bases: 1ib5c.contrib.luigi.tasks.CmdTask

Parent Task class for Tasks related to binning and smoothing.
inverse_weights = <luigi.parameter.BoolParameter object>
threshold = <luigi.parameter.FloatParameter object>
window_function = <luigi.parameter.Parameter object>
window _width = <luigi.parameter.IntParameter object>

wipe_unsmoothable_columns = <luigi.parameter.BoolParameter object>

class libb5c.contrib.luigi.tasks.IcedTask (*args, **kwargs)

Bases: 1ib5c.contrib.luigi.tasks.CmdTask
Task class for applying ICED bias correction to countsfiles.
Wraps the 1ib5c iced command line command.
Input/output specification:

* self.input () [0]: the primer or bin .bed file

e self.input () [1]: the input countsfile

e self.output (): the resulting ICED-normalized countsfile
bias = <luigi.parameter.BoolParameter object>
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
imputation_size = <luigi.parameter.IntParameter object>

run ()

class lib5c.contrib.luigi.tasks.InteractionScoreTask (*args, ¥*kwargs)

Bases: 1ib5c.contrib.luigi.tasks.CmdTask
Task class for converting p-values to interaction scores.
Wraps the 1ib5c interaction-score command line command.
Input/output specification:

e self.input () [0]: the primer or bin .bed file

e self.input () [1]: the input countsfile of p-values

* self.output (): the resulting countsfile of interaction scores
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>

run ()

class libb5c.contrib.luigi.tasks.KnightRuizTask (*args, **kwargs)

Bases: 1ib5c.contrib.luigi.tasks.CmdTask
Task class for applying KR bias correction to countsfiles.
Wraps the 1ib5c kr command line command.

Input/output specification:

124

Chapter 6

. lib5c



lib5¢c Documentation, Release 0.6.1

e self.input () [0]: the primer or bin .bed file

e self.input () [1]: the input countsfile

* self.output (): the resulting KR-normalized countsfile
bias = <luigi.parameter.BoolParameter object>
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
imputation_size = <luigi.parameter.IntParameter object>
run ()

class libb5c.contrib.luigi.tasks.LegacyPvaluesOneTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.DistributionTask

bias = <luigi.parameter.BoolParameter object>
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
run ()

class lib5c.contrib.luigi.tasks.LegacyPvaluesTwoTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.CmdTask

bias = <luigi.parameter.BoolParameter object>

dist = <luigi.parameter.Parameter object>

distance_tolerance = <luigi.parameter.IntParameter object>
fractional_tolerance = <luigi.parameter.FloatParameter object>
grouping = <luigi.parameter.Parameter object>

heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>

log = <luigi.parameter.BoolParameter object>

mode = <luigi.parameter.Parameter object>

run ()

class libb5c.contrib.luigi.tasks.LegacyVisualizeFitTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.DistributionTask, 1ib5c.contrib.luigi.tasks.
RegionalTaskMixin

distance_scale = <luigi.parameter.IntParameter object>
expected value = <luigi.parameter.FloatParameter object>
tolerance = <luigi.parameter.FloatParameter object>

class lib5c.contrib.luigi.tasks.LegacyVisualizeVarianceTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.DistributionTask, 1ib5c.contrib.luigi.tasks.
RegionalTaskMixin

class lib5c.contrib.luigi.tasks.LogTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.CmdTask

Task class for logging or unlogging a countsfile.

6.1. lib5c package 125



lib5¢c Documentation, Release 0.6.1

Wraps the 1ib5c 1og command line command.
Input/output specification:
e self.input () [0]: the primer or bin .bed file
e self.input () [1]: the input countsfile (to be logged)
* self.output (): the resulting countsfile (after logging)
log base = <luigi.parameter.Parameter object>
pseudocount = <luigi.parameter.FloatParameter object>

unlog = <luigi.parameter.BoolParameter object>

class lib5c.contrib.luigi.tasks.OutliersTask (*args, **kwargs)

Bases: 1ib5c.contrib.luigi.tasks.CmdTask
Task class for applying high outlier removal to countsfiles.
Wraps the 1ib5c outliers command line command.
Input/output specification:

* self.input () [0]: the primer or bin .bed file

e self.input () [1]: the input countsfile

e self.output (): the resulting outlier-filtered countsfile
fold_threshold = <luigi.parameter.FloatParameter object>
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
overwrite_value = <luigi.parameter.Parameter object>
run ()

window_size = <luigi.parameter.IntParameter object>

class libb5c.contrib.luigi.tasks.PvalueTask (*args, **kwargs)

Bases: 1ib5c.contrib.luigi.tasks.CmdTask
Task class for calling p-values.
Wraps the 1ib5c pvalues command line command.
Input/output specification:

* self.input () [0]: the primer or bin .bed file

e self.input () [1]: the input observed countsfile

e self.input () [2]: the input expected countsfile

e self.input () [3]: the input variance countsfile

* self.output (): the resulting countsfile of p-values
distribution = <luigi.parameter.Parameter object>
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
log = <luigi.parameter.BoolParameter object>

run ()

126

Chapter 6

. lib5c



lib5¢c Documentation, Release 0.6.1

vst = <luigi.parameter.BoolParameter object>

class lib5c.contrib.luigi.tasks.QnormTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.CmdTask

Task class for applying quantile normalization to countsfiles.
Wraps the 1ib5¢c gnorm command line command.
Input/output specification:

* self.input () [0]: the primer or bin .bed file

e self.input () [1:]: the input countsfiles

e self.output (): not specified explicitly, see below

Technically this class should specify a list of outputs, one for each input countsfile. In practice, this specification
of outputs is left to whatever code strings together the pipeline. The 1ib5¢c gnorm command will produce
output files on disk based on the out file_pattern and the file names of the input countsfiles.

averaging = <luigi.parameter.BoolParameter object>
condition_on = <luigi.parameter.Parameter object>
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
outfile_pattern = <luigi.parameter.Parameter object>
reference = <luigi.parameter.Parameter object>
regional = <luigi.parameter.BoolParameter object>
run ()

class lib5c.contrib.luigi.tasks.QvaluesTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.CmdTask

Task class for converting p-values to g-values.
Wraps the 1ib5c gvalues command line command.
Input/output specification:

e self.input () [0]: the primer or bin .bed file

e self.input () [1]: the input countsfile of p-values

e self.output (): the resulting countsfile of g-values
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
method = <luigi.parameter.Parameter object>
run ()

class lib5c.contrib.luigi.tasks.RegionalTaskMixin
Bases: object

Mixin class for Tasks that write a separate output file per region.

region = <luigi.parameter.Parameter object>

6.1. lib5c package 127



lib5¢c Documentation, Release 0.6.1

class lib5c.contrib.luigi.tasks.SmoothTask (*args, **kwargs)

Bases: 1ib5c.contrib.luigi.tasks.FilteringTask
Task class for smoothing countsfiles.
Wraps the 1ib5c smooth command line command.
Input/output specification:

e self.input () [0]: the primer or bin .bed file

e self.input () [1]: the input observed countsfile

e self.output (): the resulting countsfile of smooth observed values
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>

run ()

class libb5c.contrib.luigi.tasks.SplineTask (*args, **kwargs)

Bases: 1ib5c.contrib.luigi.tasks.CmdTask
Task class for applying explicit spline bias correction to countsfiles.
Wraps the 1ib5c spline command line command.
Input/output specification:

e self.input () [0]: the primer or bin .bed file

e self.input () [1]: the input countsfile

e self.output (): the resulting spline-normalized countsfile
bias_factors = <luigi.parameter.ListParameter object>
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
knots = <luigi.parameter.ListParameter object>
model_outfile = <luigi.parameter.Parameter object>

run ()

class lib5c.contrib.luigi.tasks.SubtractTask (*args, **kwargs)

Bases: 1ib5c.contrib.luigi.tasks.CmdTask
Task class for subtracting one countsfile from another.
Wraps the 1ib5c subtract command line command.
Input/output specification:

e self.input () [0]: the primer or bin .bed file

e self.input () [1]: the minuend (countsfile to subtract from)

e self.input () [2]: the subtrahend (countsfile to subtract)

e self.output (): the difference (countsfile resulting from the subtraction)
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>

run ()

128

Chapter 6

. lib5c



lib5¢c Documentation, Release 0.6.1

class lib5c.contrib.luigi.tasks.ThresholdTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.CmdTask

Task class for thresholding p-value countsfiles to call loops.
Wraps the 1ib5c threshold command line command.
Input/output specification:

e self.input () [0]: the primer or bin .bed file

e self.input () [1:]: the input countsfiles of p-values

e self.output () [0]: the output countsfile of called loops

e self.output () [1]: the output text file summarizing the loop calls

* self.output () [2]: the output .csv file containing the complete analysis results
background threshold = <luigi.parameter.FloatParameter object>
bh_fdr = <luigi.parameter.BoolParameter object>
concordant = <luigi.parameter.BoolParameter object>
conditions = <luigi.parameter.Parameter object>
dataset_outfile = <luigi.parameter.Parameter object>
distance_threshold = <luigi.parameter.IntParameter object>
heatmap = <luigi.parameter.BoolParameter object>
heatmap_outdir = <luigi.parameter.Parameter object>
kappa_confusion_outfile = <luigi.parameter.Parameter object>
run ()
significance_threshold = <luigi.parameter.FloatParameter object>
size_threshold = <luigi.parameter.IntParameter object>
two_tail = <luigi.parameter.BoolParameter object>

class lib5c.contrib.luigi.tasks.VarianceTask (*args, **kwargs)
Bases: 1ib5c.contrib.luigi.tasks.CmdTask

Task class for computing variance estimates.
Wraps the 1ib5c variance command line command.
Input/output specification:

e self.input () [0]: the primer or bin .bed file

e self.input () [1]: the input observed countsfile

* self.input () [2]: the input expected countsfile

* self.output (): the resulting countsfile of variance estimates
agg_fn = <luigi.parameter.Parameter object>
fitter = <luigi.parameter.Parameter object>
logx = <luigi.parameter.BoolParameter object>
logy = <luigi.parameter.BoolParameter object>

min_disp = <luigi.parameter.Parameter object>

6.1. lib5c package 129



lib5¢c Documentation, Release 0.6.1

min_dist = <luigi.parameter.IntParameter object>
min_obs = <luigi.parameter.FloatParameter object>
model = <luigi.parameter.Parameter object>
regional = <luigi.parameter.BoolParameter object>
source = <luigi.parameter.Parameter object>
X _unit = <luigi.parameter.Parameter object>
y_unit = <luigi.parameter.Parameter object>

lib5c.contrib.luigi.tasks.add_visualization_hooks (f, pvalue=False,

obs_over_exp=Fualse, tetris=False)
Decorator intended to wrap the run () method of luigi Task subclasses to automatically visualize the result of

the Task class after it completes.
Parameters

e £ (function) — The function to add visualization hooks to. Intended to be the run ()
method of luigi Task subclasses.

* pvalue (bool) — Pass True to denote that the visualized heatmaps should be drawn using
the p-value colorscale.

* obs_over_exp (bool) — Pass True to denote that the visualized heatmaps should be
drawn using the obs_over_exp colorscale.

* tetris (bool) — Pass True to denote that the visualized heatmaps should be drawn as
tetris heatmaps.

Returns The hooked function.
Return type function

lib5c.contrib.luigi.tasks.get_all_lines (filename)
Utility function for reading all lines from a file on disk.

Parameters filename (str)— The file to read from.
Returns The contents of the file.
Return type str

lib5c.contrib.luigi.tasks.parallelize_reps (task_class, reps, **kwargs)
Parallelizes any Task class whose constructor accepts a rep kwarg across a list of reps by creating a new
WrapperTask.

Parameters
* task_class (luigi.Task subclass)— The Task to parallelize.
* reps (1ist of str)- Listof reps to parallelize over.
* kwargs (kwargs) — Additional kwargs to pass through to the Task class.

Returns A WrapperTask which simply requires the original task_class to be run for every rep
in reps.

Return type luigi.WrapperTask subclass

lib5c.contrib.luigi.tasks.parallelize_reps_regions (task_class, reps, regions,
**kwargs)
Parallelizes any Task class whose constructor accepts rep and region kwargs across lists of reps and regions
by creating a new WrapperTask.

130 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Parameters
* task_class (luigi.Task subclass)— The Task to parallelize.
* reps (1ist of str)- Listof reps to parallelize over.
* regions (list of str)-— Listof regions to parallelize over.
* kwargs (kwargs) — Additional kwargs to pass through to the Task class.

Returns A WrapperTask which simply requires the original task_class to be run for every rep
in reps and every region in regions.

Return type luigi.WrapperTask subclass

lib5c.contrib.luigi.tasks.visualizable (pvalue=False, obs_over_exp=False, tetris=False)
Class decorator factory for luigi Task subclasses which allows the task to automatically visualize itself after
completion by

1. adding heatmap and heatmap_outdir parameters to the Task and

2. decorating the Task’s run () method with add_visualization_hooks ()

Parameters

* pvalue (bool) — Pass True to denote that the visualized heatmaps should be drawn using
the p-value colorscale.

* obs_over_exp (bool) — Pass True to denote that the visualized heatmaps should be
drawn using the obs_over_exp colorscale.

* tetris (bool) — Pass True to denote that the visualized heatmaps should be drawn as
tetris heatmaps.

Returns The class decorator.

Return type function

Module contents
lib5c.contrib.pybigwig package
Submodules
lib5c.contrib.pybigwig.bigwig module

Module for interfacing with the external pyBigWig Python package, which enables reading and searching genomic
features from .bigwig files.

class libb5c.contrib.pybigwig.bigwig.BigWig (filename)
Bases: object

Wrapper class around pyBigWig, mostly to expose our own guery() function.

bw
The underlying pyBigWig object.

Type pyBigWig object

query (grange, stat="max’, num_bins=None, exact=True)
Signature rework/wrapper around pyBigWig’s stats() and intervals().

6.1. lib5c package 131



lib5¢c Documentation, Release 0.6.1

Parameters

* grange (Dict[str, Any])- The genomic range to query. Should have at least the
following structure:

{
'chrom': str,
'start': int,
'end': int

* num_bins (Optional [int]) — Pass an integer to split grange into num_bins bins of
equal width, and return a summary statistic for each bin. Pass None to return all bigwig
features in grange without binning.

* stat (str)- The summary statistic to use if num_bins is not None.

* exact (bool)—Pass True to ignore bigwig zoom levels when computing summary statis-
tics and return the exact answer instead.

Returns A list of bed features with ‘value’ keys representing the results of the query.
Return type List[Dict[str, Any]]

lib5c.contrib.pybigwig.bigwig.bigwig_awvail ()
Utility function for checking if pyBigWig is installed.

Returns True if pyBigWig is installed, otherwise False.

Return type bool

Module contents

lib5c.contrib.seaborn package

Module contents

Module contents

Subpackage for interfacing with non-standard third-party modules.
lib5c.core package

Submodules

lib5c.core.interactions module

class lib5c.core.interactions.InteractionMatrix (matrix, locusmap=None)
Bases: 1ib5c.core.mixins.Picklable, 1ib5c.core.mixins.Annotatable, 1ib5c.core.
mixins.Loggable

Class representing pairwise architectural contact frequencies between genomic loci. At its heart, this is a square,
symmetric matrix whose ¢j th entry corresponds to the interaction frequency between the ¢ th genomic locus
and the j th genomic locus. Optionally, some metadata for the genomic loci may be included.

132 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

matrix
The matrix of interaction frequencies.

Type square, symmetric numpy matrix

locusmap
Metadata for the genomic loci in the form of a LocusMap object. The size of the LocusMap passed should
be equal to the size of matrix.

Type LocusMap, optional

Notes
Several accessor shortcuts are provided via this class’s implementation of __getitem__ (). Consult that
function’s docstring for more details.

Some elements of the mat rix of an InteractionMatrix may be set to np . nan in cases where data is not avail-
able or where interactions are impossible. Impossible interactions are those involving fragments with the same
directionality. If a LocusMap whose constituent Locus objects have st rand keys in their data attribute is
provided when an InteractionMatrix is created, the impossible interactions will be set to np . nan automatically.

delete (index, inplace=True)
Delete a Locus and all its interaction information from this InteractionMatrix.

Parameters
¢ index (int) - The index of the Locus to delete.

e inplace (bool, optional) — If True, the deletion is performed inplace, preserv-
ing the reference to the original InteractionMatrix, though the underlying matrix and
locusmap attributes will be present as new objects. If False, the original InteractionMa-
trix object will be unaffected.

Returns The resulting InteractionMatrix. If the operation was performed in-place, this is just a
reference to this.

Return type InteractionMatrix

Examples

>>> import numpy as np
>>> from lib5c.core.interactions import InteractionMatrix
>>> from lib5c.core.loci import Locus, LocusMap
>>> X = np.arange (16, dtype=float) .reshape((4, 4))
>>> counts = X + X.T
>>> im = InteractionMatrix (counts,
locusmap=LocusMap ( [
Locus ('chr3', 34109023, 34113109, name='5C_329_Sox2 FOR_2',
strand='+"', region='Sox2'"),
Locus ('chr3', 34113147, 34116141, name='5C_329 Sox2 REV_4"',

strand='-"', region='Sox2'),
Locus ('chr3', 87282063, 87285636, name='5C_326_Nestin_REV_9',
strand='-'", region='Nestin'),

Locus ('chr3', 87285637, 87295935, name='5C_326_Nestin_FOR_10",
strand='+"', region='Nestin')]))

>>> print (im)

(continues on next page)

6.1. lib5c package 133



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

InteractionMatrix of size 4
[[nan 5. 10. nan]
[ 5. nan nan 20.]
[10. nan nan 25.]
[nan 20. 25. nanl]]
Associated LocusMap:
LocusMap comprising 4 loci
Range: chr3:34109023-34113109 to chr3:87285637-87295935
Regions: ['Sox2', 'Nestin']
>>> deleted_im = im.delete (2, inplace=False) # non—-in-place delete
>>> deleted_im.print_log()
InteractionMatrix created
deleted locus at index 2 with name 5C_326_Nestin REV_9
>>> print (deleted_im)
InteractionMatrix of size 3
[[nan 5. nan]
[ 5. nan 20.]
[nan 20. nan]]
Associated LocusMap:
LocusMap comprising 3 loci
Range: chr3:34109023-34113109 to chr3:87285637-87295935
Regions: ['Sox2', 'Nestin']
>>> im.size() # original object unaffected
4
>>> deleted_im['5C_329_ Sox2_REV_4', '5C_326_Nestin_ FOR_10"]
20.0
>>> deleted_im = im.delete(2) # in-place delete
>>> deleted_im.print_log()
InteractionMatrix created
deleted locus at index 2 with name 5C_326_Nestin REV_9
>>> print (im) # original object affected
InteractionMatrix of size 3
[[nan 5. nan]
[ 5. nan 20.]
[nan 20. nan]]
Associated LocusMap:
LocusMap comprising 3 loci
Range: chr3:34109023-34113109 to chr3:87285637-87295935
Regions: ['Sox2', 'Nestin']

extract_region (region)
Extract a submatrix of this Interaction Matrix corresponding to a specified region.

Parameters region (str)— The name of the region to extract.

Returns The submatrix of this InteractionMatrix corresponding to the specified region. This is
returned as a new, independent InteractionMatrix object (see Examples below).

Return type InteractionMatrix

Examples

>>> import numpy as np

>>> from lib5c.core.interactions import InteractionMatrix
>>> from lib5c.core.loci import Locus, LocusMap

>>> X = np.arange (16, dtype=float) .reshape((4, 4))

(continues on next page)

134

Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

>>> counts = X + X.T
>>> im = InteractionMatrix (counts,
locusmap=LocusMap ( [
Locus ('chr3', 34109023, 34113109, name='5C_329_ Sox2 FOR_2"',
strand='+"', region='Sox2'"),
Locus ('chr3', 34113147, 34116141, name='5C_329 Sox2 REV_4"',

strand='-"', region='Sox2'),
Locus ('chr3', 87282063, 87285636, name='5C_326_Nestin_REV_9',
strand='-", region='Nestin'),

Locus ('chr3', 87285637, 87295935, name='5C_326_Nestin_FOR_10",
strand='+"', region='Nestin')]))

>>> im.matrix

matrix ([ [nan, 5., 10., nan
[ 5., nan, nan, 20
[10., nan, nan, 25.
[nan, 20., 25., nan

>>> im.get_regions ()

['"Sox2', 'Nestin']

>>> sox2_1im = im.extract_region('Sox2"'")

>>> sox2_im.print_log ()

InteractionMatrix created

extracted region Sox2

>>> sox2_im.matrix

matrix ([ [nan, 5.1,
[ 5., nan]])

>>> nestin_im = im.extract_region('Nestin')

>>> nestin_im.matrix

matrix ([[nan, 25.7,
[25., nan]])

>>> from lib5c.core.interactions import InteractionMatrix

>>> im = InteractionMatrix.from_primerfile('test/primers.bed")

>>> im.get_regions ()

['Sox2', 'Nestin', 'K1f4', 'gene-desert', 'Nanog-Vv2', '0Oligl-0Olig2',
'Octd']

>>> im.size ()

1551

>>> im['5C_329_Sox2_FOR_2', '5C_329_Sox2_REV_4'] = 1.0

>>> im['5C_329_Sox2_FOR_2', '5C_329_Sox2_REV_4']

1.0

>>> sox2_im = im.extract_region('Sox2")

>>> sox2_im.get_regions()

["Sox2"']

>>> sox2_1im.size ()

265

>>> sox2_1im['5C_329_Sox2_ FOR_2', '5C_329 Sox2_REV_4']
1.0

>>> sox2_im['5C_329_Sox2_FOR_2', '5C_329_Sox2_REV_4'] = 2.0
>>> im['5C_329_Sox2_FOR_2', '5C_329_Sox2_REV_4']
1.0

extract_slice (desired_slice)

Gets a new InteractionMatrix object representing the interactions of a subset of the loci described in this
InteractionMatrix as specified by a slice object.

Parameters desired_slice (s1ice) - The slice to use to subset this InteractionMatrix.

6.1. lib5c package 135




lib5¢c Documentation, Release 0.6.1

Returns The new InteractionMatrix.

Return type InteractionMatrix

Notes

Since LocusMap objects are sorted, slices with negative steps will be reversed before being applied to the
matrix attribute.

Examples

>>> import numpy as np
>>> from lib5c.core.interactions import InteractionMatrix
>>> X = np.arange (16, dtype=float) .reshape((4, 4))
>>> im = InteractionMatrix (X + X.T)
>>> im.matrix
matrix ([[ O., 5., 10., 15.
[ 5., 10., 15., 20.
[10., 15., 20., 25.
[15., 20., 25., 30.
>>> gliced_im = im[1:3]
>>> sliced_im.print_log()
InteractionMatrix created
sliced out slice(l, 3, None)
>>> gsliced_im.matrix
matrix ([[10., 15.7,
[15., 20.11)
>>> reverse_sliced_im = im[3:1:-1]
>>> reverse_sliced_im.matrix
matrix ([[10., 15.7,
[15., 20.11)

N NN

>>> from lib5c.core.interactions import InteractionMatrix

>>> im = InteractionMatrix.from_primerfile('test/primers.bed")
>>> 1 = im['5C_329_Sox2_FOR_33"']

>>> j = im['5C_329_Sox2_REV_89"']

>>> im[i, 1+1] 1.0

>>> im[]j, j-1]1 = 2.0

>>> im[i, J] = 3.0

>>> sliced_im = im[i:3+1]
>>> sliced_im[0, 1]

1.0

>>> gliced_im[-1, -2]

2.0

>>> sliced_im[0, -1]

3.0

>>> sliced_im.size() == 1 + j — i
True

>>> gliced_im.get_regions ()
['Sox2']

>>> sliced_im.locusmap[0].get_name ()
'5C_329_Sox2_FOR_33"

>>> sliced_im.locusmap[—-1].get_name ()
'5C_329_Sox2_REV_89'

136

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

flatten (discard_nan=True)
Flattens the interaction values in this InteractionMatrix into a flat, non-redundant array.

Parameters discard_nan (bool, optional) — If True, nan’s will not be filtered out of
the returned array.

Returns A flat, nonredundant array of the interaction values. The (i, j) th element of this Inter-
actionMatrix’s mat rix attribute (for i >= j ) ends up at the (¢ x (i +1)/2 + j) th index of
the flattened array. If discard_nan was True, these indices will not necessarily match up
and it will not be possible to unflatten the array.

Return type 1d numpy array

Notes

A more intuitive way to think about the ordering is to read down the columns of matrix from left to
right, going to the next column whenever you reach the diagonal.

Examples

>>> import numpy as np
>>> from lib5c.core.interactions import InteractionMatrix

>>> im = InteractionMatrix(np.matrix ([[ 3.0, np.nan, 5.071,
[np.nan, 6.0, np.nan],
[ 5.0, np.nan, 8.011))

>>> im.flatten ()

array ([3., 6., 5., 8.1)

>>> im.flatten (discard_nan=False)

array ([ 3., nan, 6., 5., nan, 8.1)

flatten_cis (discard_nan=True)
Flattens only the cis interaction values in this InteractionMatrix into a flat, non-redundant array.

Parameters discard_nan (bool, optional) — If True, nan’s will not be filtered out of
the returned array.

Returns The result of f1latten () -ing each region separately and concatenating the results.

Return type 1d numpy array

Examples

>>> import numpy as np
>>> from lib5c.core.interactions import InteractionMatrix
>>> from lib5c.core.loci import Locus, LocusMap
>>> X = np.arange (16, dtype=float) .reshape((4, 4))
>>> counts = X + X.T
>>> im = InteractionMatrix (counts,
locusmap=LocusMap ( [
Locus ('chr3', 34109023, 34113109, name='5C_329_ Sox2 FOR_2"',
region="'Sox2"),
Locus ('chr3', 34113147, 34116141, name='5C_329_Sox2_REV_4"'",
region="'Sox2"),
Locus ('chr3', 87282063, 87285636, name='5C_326_Nestin_REV_9',

(continues on next page)

6.1. lib5c package 137



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

region="'Nestin'),
Locus ('chr3', 87285637, 87295935, name='5C_326_Nestin_FOR_10",
region='Nestin')]))

>>> im[0, 1] = np.nan

>>> im[3, 3] = np.nan

>>> print (im)
InteractionMatrix of size 4
[[ 0. nan 10. 15.]

[nan 10. 15. 20.]

[10. 15. 20. 25.]

[15. 20. 25. nan]]
Associated LocusMap:
LocusMap comprising 4 loci

Range: chr3:34109023-34113109 to chr3:87285637-87295935

Regions: ['Sox2', 'Nestin']
>>> im.flatten_cis ()
array ([ 0., 10., 20., 25.1)
>>> im.flatten_cis(discard_nan=False)
array ([ 0., nan, 10., 20., 25., nanl])

classmethod from binfile (binfile)
Factory method that creates an InteractionMatrix object whose matrix attribute is initialized with all
zeros and whose genomic loci are described by data parsed from a BED file containing bin information.

Parameters binfile (str) — String reference to a BED file containing bin information to be
parsed and used as metadata for the genomic loci.

Returns InteractionMatrix object.

Return type InteractionMatrix

Examples

>>> from lib5c.core.interactions import InteractionMatrix
>>> im = InteractionMatrix.from binfile('test/bins new.bed'")
>>> im.print_log()

InteractionMatrix created

source binfile: test/bins_new.bed

>>> im.locusmap.size ()

1807

>>> im.size ()

1807

>>> im['gene-desert_BIN_047', 'Nestin_BIN_000"]
0.0

classmethod from countsfile (countsfile, locusmap=None, primerfile=None, binfile=None)
Factory method that creates an InteractionMatrix object from a .counts file.

Parameters
* countsfile (str) - String reference to the .counts file to parse.

* locusmap (LocusMap, optional)— Metadata for the genomic loci in the form of a
LocusMap object.

* primerfile (str, optional) - String reference to a BED file containing primer
information to be parsed and used as metadata for the genomic loci.

138

Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

* binfile (str, optional) - String reference to a BED file containing bin informa-
tion to be parsed and used as metadata for the genomic loci.

Returns InteractionMatrix object parsed from the .counts file.

Return type [nteractionMatrix

Notes

At least one of locusmap, primerfile, or binfile must be passed. The matrix attribute of the
returned InteractionMatrix will have the same size as whichever of these was passed.

Examples

>>> from lib5c.core.interactions import InteractionMatrix
>>> im = InteractionMatrix.from_ countsfile(
'test/test_raw.counts', primerfile='test/primers.bed')

>>> im.print_log()

InteractionMatrix created

source countsfile: test/test_raw.counts

source primerfile: test/primers.bed

>>> im.locusmap.size ()

1551

>>> im.size ()

1551

>>> im['5C_325_01igl-01lig2_FOR_38', '5C_331_gene-desert_REV_62"]
1.0

>>> im['5C_325_01igl-01lig2_REV_237', '5C_325_01igl-01lig2_REV_230"]
nan

classmethod from 1list (list_of_interaction_matrices)
Factory method that creates an InteractionMatrix object via iterative addition of a list of InteractionMatrix
objects.

Parameters list_of interaction_matrices (list of InteractionMatrix)
— The InteractionMatrix objects to concatenate.

Returns The resulting InteractionMatrix.
Return type InteractionMatrix

Notes

This function operates via naive iterate addition and so the following are basically equivalent:

summed_im = InteractionMatrix.from_list (list_of_im)
sum(list_of_im, InteractionMatrix([]))

summed_im

Neither implementation is particularly efficient. See the Examples section for details.

Examples

6.1. lib5c package 139



lib5¢c Documentation, Release 0.6.1

>>> import numpy as np
>>> from lib5c.core.interactions import InteractionMatrix

>>> iml = InteractionMatrix (np.matrix([[1.0, 2.0]1, [2.0, 1.011))
>>> im2 = InteractionMatrix (np.matrix([[3.0, 4.0]1, [4.0, 3.011))
>>> summed_im = InteractionMatrix.from_list([iml, im2])

>>> summed_im.print_log()
InteractionMatrix created
created from addition
created from list

>>> summed_im.matrix

matrix([[1., 2., 0., 0.],
[2., 1., 0., 0.1,
[0., 0., 3., 4.1,
[0., 0., 4., 3.11)

>>> import numpy as np
>>> from lib5c.core.interactions import InteractionMatrix
>>> from lib5c.core.loci import Locus, LocusMap
>>> iml = InteractionMatrix (np.matrix([[np.nan, 1.0], [1.0, np.nanll),
locusmap=LocusMap ( [
Locus ('chr3', 34109023, 34113109, name='5C_329_ Sox2 FOR_2"',
strand='+"),
Locus ('chr3', 34113147, 34116141, name='5C_329_Sox2_REV_4"',
strand='-")1))

>>> im2 = InteractionMatrix (np.matrix([[np.nan, 2.0], [2.0, np.nan]l]),
locusmap=LocusMap ( [
Locus ('chr3', 87282063, 87285636, name='5C_326_Nestin_REV_9',
strand='-"),
Locus ('chr3', 87285637, 87295935, name='5C_326_Nestin_FOR_10",
strand="+"')1))

>>> summed_im = InteractionMatrix.from_list ([iml, im2])

>>> summed_im.matrix

matrix ([ [nan, 1., 0., nan],
[ 1., nan, nan, 0.]
[ 0., nan, nan, 2.]
[nan, 0., 2., nan]

14

1)

classmethod from locusmap (locusmap)
Factory method that creates an InteractionMatrix object whose matrix attribute is initialized with all
zeros and whose genomic loci are described by a LocusMap object.

Parameters locusmap (LocusMap) — Metadata for the genomic loci in the form of a Lo-
cusMap object.

Returns InteractionMatrix object.

Return type InteractionMatrix

Examples

>>> from lib5c.core.interactions import InteractionMatrix

>>> from lib5c.core.loci import LocusMap, Locus

>>> locus_list = [Locus('chr3', 34109023, 34113109),
Locus ('chr3', 34113147, 34116141)]

(continues on next page)

140

Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

>>> locus_map = LocusMap (locus_list)

>>> im = InteractionMatrix.from_locusmap (locus_map)

>>> im.print_log()

InteractionMatrix created

created from locusmap

>>> im.matrix

matrix([[0., 0.],
[0., 0.11)

classmethod from primerfile (primerfile)
Factory method that creates an InteractionMatrix object whose matrix attribute is initialized with all
zeros and whose genomic loci are described by data parsed from a BED file containing primer information.

Parameters primerfile (str) — String reference to a BED file containing primer informa-
tion to be parsed and used as metadata for the genomic loci.

Returns InteractionMatrix object.

Return type InteractionMatrix

Examples

>>> from lib5c.core.interactions import InteractionMatrix

>>> im = InteractionMatrix.from_primerfile('test/primers.bed")
>>> im.print_log()

InteractionMatrix created

source primerfile: test/primers.bed

>>> im.locusmap.size ()

1551

>>> im.size ()

1551

>>> im['5C_325_01igl-0lig2_FOR_38"', '5C_331_gene-desert_REV_62"]
0.0

>>> im['5C_325_01igl-01ig2_REV_237', '5C_325_01igl-01ig2_REV_230"]
nan

classmethod from_ size (size)
Factory method that creates an InteractionMatrix object whose matrix attribute is initialized with all
zeros and whose size is specified.

Parameters size (int)-Size of the mat rix attribute of the desired InteractionMatrix object.
Returns InteractionMatrix object.

Return type InteractionMatrix

Examples

>>> from lib5c.core.interactions import InteractionMatrix
>>> im = InteractionMatrix.from_size (2)

>>> im.print_log()

InteractionMatrix created

created from size 2

>>> im.matrix

(continues on next page)

6.1. lib5c package 141



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

get_regions ()
Get the regions covered by this InteractionMatrix, if this can be deduced from its metadata. For this to
work, the metadata in this InteractionMatrix’s 1ocusmap attribute must consist of Locus objects with
'name ' keys in their data attributes.

Returns The ordered list of region names as strings.

Return type list of str

Examples

>>> from lib5c.core.interactions import InteractionMatrix

>>> im = InteractionMatrix.from_primerfile('test/primers.bed")

>>> im.get_regions ()

['Sox2', 'Nestin', 'K1f4', 'gene-desert', 'Nanog-Vv2', '0Oligl-0Olig2',
'Oct4d ']

size()
Get the size of the InteractionMatrix. This value is equal to either dimension of the mat rix attribute as
well as the number of Locus objects in the associated LocusMap, if present.

Returns Size of this InteractionMatrix.

Return type long

Examples

>>> from lib5c.core.interactions import InteractionMatrix

>>> im = InteractionMatrix.from_size (2)
>>> im.matrix
matrix ([[0., 0.],
[0., 0.11)
>>> im.size ()
2

to_countsfile (filename, omit_zeros=True)
Write the interaction values in this InteractionMatrix to a countsfile.

Parameters
* filename (str) — String reference to file to write to.

e omit_zeros (bool, optional) - If True, lines will not be written to the outfile if
the counts for that line are zero.

Examples

>>> from lib5c.core.interactions import InteractionMatrix
>>> from lib5c.core.loci import Locus, LocusMap

>>> from lib5c.operators.standardization import Standardizer
>>> s = Standardizer ()

(continues on next page)

142 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

>>> Im = LocusMap ([

Locus ('chr3', 34109023, 34113109, name='5C_329_Sox2_FOR_2',
region="'Sox2"),

Locus ('chr3', 34113147, 34116141, name='5C_329_ Sox2 REV_4"',
region="'Sox2"),

Locus ('chr3', 87282063, 87285636, name='5C_326_Nestin_REV_9',
region="'Nestin'),

Locus ('chr3', 87285637, 87295935, name='5C_326_Nestin_FOR_10",
region='Nestin')

1)

>>> iml = InteractionMatrix ([

[ . . ]

([ 5., 10., 15., 20.1,

( 10., 15., 20., 25.1,

[ 15., 20., 25., 30.11, locusmap=1lm)

>>> print (iml)
InteractionMatrix of size 4

([ 0. 5. 10. 15.]

[ 5. 10. 15. 20.]

[10. 15. 20. 25.]

[15. 20. 25. 30.1]
Associated LocusMap:
LocusMap comprising 4 loci

Range: chr3:34109023-34113109 to chr3:87285637-87295935

Regions: ['Sox2', 'Nestin']
>>> iml.to_countsfile('test/core test.counts')
>>> im2 = InteractionMatrix.from_countsfile('test/core_test.counts',

locusmap=1m)

>>> print (im2)
InteractionMatrix of size 4
[[ 0. 5. 10. 15.]
[ 5. 10. 15. 20.]
[10. 15. 20. 25.]
[15. 20. 25. 30.1]]
Associated LocusMap:
LocusMap comprising 4 loci
Range: chr3:34109023-34113109 to chr3:87285637-87295935
Regions: ['Sox2', 'Nestin']

unflatten (values)
Overwrite the matrix attribite of this InteractionMatrix object with values from a flat list, such as that
created by InteractionMatrix.flatten ().

Parameters values (I1d iterable of float) - A flat, nonredundant list of the interac-
tion values. The (4, j) th element of this InteractionMatrix’s mat rix attribute (for i >= j )
will be set to the (¢ x (i + 1)/2 4 j) th value of the flattened list.

Examples

>>> import numpy as np

>>> from lib5c.core.interactions import InteractionMatrix

>>> im = InteractionMatrix (np.matrix ([[ 3.0, np.nan, 5.071,
[np.nan, 6.0, np.nan],

(continues on next page)

6.1. lib5c package 143



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

[ 5.0, np.nan, 8.011))
>>> values = im.flatten (discard_nan=False)
>>> values
array ([ 3., nan, 6., 5., nan, 8.1)

>>> values += 1
>>> values
array ([ 4., nan, 7., 6., nan, 9.1)
>>> im.unflatten (values)
>>> print (im)
InteractionMatrix of size 3
[[ 4. nan 6.]
[nan 7. nan]
[ 6. nan 9.1]

unflatten_cis (values)
Overwrite only the cis interaction values of the matrix attribite of this InteractionMatrix object with
values from a flat list, such as that created by InteractionMatrix.flatten_cis ().

Parameters values (1d 1ist of float)- A flat, nonredundant list of the cis interaction
values. The order should match what would be expected from flatten () -ing each region
of the InteractionMatrix seperately and concatenating the results.

Examples

>>> import numpy as np
>>> from lib5c.core.interactions import InteractionMatrix
>>> from lib5c.core.loci import Locus, LocusMap
>>> X = np.reshape(range(16), (4, 4)).astype(float)
>>> counts = X + X.T
>>> im = InteractionMatrix (counts,
locusmap=LocusMap ( [
Locus ('chr3', 34109023, 34113109, name='5C_329_Sox2_FOR_2',
strand='+"', region='Sox2'"),
Locus ('chr3', 34113147, 34116141, name='5C_329_ Sox2 REV_4"',

strand='-"', region='Sox2"'"),
Locus ('chr3', 87282063, 87285636, name='5C_326_Nestin_ REV_9',
strand='-", region='Nestin'),

Locus ('chr3', 87285637, 87295935, name='5C_326_Nestin_FOR_10",
strand='+"', region='Nestin')]))

>>> print (im)
InteractionMatrix of size 4
[[nan 5. 10. nan]
[ 5. nan nan 20.]
[10. nan nan 25.]
[nan 20. 25. nanl]]
Associated LocusMap:
LocusMap comprising 4 loci
Range: chr3:34109023-34113109 to chr3:87285637-87295935
Regions: ['Sox2', 'Nestin']
>>> values = im.flatten_cis(discard_nan=False)
>>> values
array ([nan, 5., nan, nan, 25., nan])
>>> values += 1

(continues on next page)

144 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

>>> values
array ([nan, 6., nan, nan, 26., nanl])
>>> im.unflatten_cis (values)
>>> print (im)
InteractionMatrix of size 4
[[nan 6. 10. nan]
[ 6. nan nan 20.]
[10. nan nan 26.]
[nan 20. 26. nan]]
Associated LocusMap:
LocusMap comprising 4 loci
Range: chr3:34109023-34113109 to chr3:87285637-87295935
Regions: ['Sox2', 'Nestin']

lib5c.core.loci module

class lib5c.core.loci.Locus (chrom, start, end, **kwargs)
Bases: 1ib5c.core.mixins.Picklable, 1ib5c.core.mixins.Annotatable

Basically anything with a chromosome, start, and end. Can also include arbitrary metadata.

chrom
The chromosome on which this locus resides (e.g., 'chr4").

Type str
start
The start coordinate for the zero-indexed, half-open interval occupied by the locus.
Type int
end
The end coordinate for the zero-indexed, half-open interval occupied by the locus.
Type int
data
Arbitrary additional data about the locus. This attribute is filled in with any kwargs passed to the construc-
tor.
Type dict(str -> any)
Notes

Locus objects support comparison and ordering via the total_ ordering decorator. See this class’s imple-
mentationsof __eq_ () and__1t__ () for more details.

Locus objects support the Annotatable mixin, which is the source of their data attribute and all its related
functions.

as_dict ()
Gets a dict representation of the Locus.

Returns

This dict is guaranteed to have at least the following keys:

6.1. lib5c package 145



lib5¢c Documentation, Release 0.6.1

'chrom': str,
'start': int,
'end': int

Other keys may be present if included in the data attribute.

Return type dict

Examples

>>> from lib5c.core.loci import Locus
>>> locus = Locus('chr3', 34109023, 34113109, strand='+")
>>> locus.as_dict () ==
{'chrom': 'chr3',
'start': 34109023,
'end': 34113109,
Ce 'strand': '+'}
True

get_name ()
Gets the name of the locus, if present.

Returns The value of data [ 'name'] if it exists; None otherwise.

Return type str or None

Examples

>>> from lib5c.core.loci import Locus

>>> locus = Locus('chr3', 34109023, 34113109, name='5C_329 Sox2_ FOR_2")
>>> locus.get_name ()

'5C_329_Sox2_FOR_2'

get_region ()
Gets the region of the locus, if present.

Returns The value of data [ 'region'] if it exists; None otherwise.

Return type str or None

Examples

>>> from lib5c.core.loci import Locus

>>> locus = Locus('chr3', 34109023, 34113109, region='Sox2')
>>> locus.get_region ()

'Sox2"'

get_strand()
Gets the strand of the locus, if present.

Returns The value of data [ 'strand'] if it exists; None otherwise.

Return type ‘+’ or ‘-‘ or None

146 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Examples

>>> from lib5c.core.loci import Locus

>>> locus = Locus('chr3', 34109023, 34113109, strand='+")
>>> locus.get_strand()

l+l

class lib5c.core.loci.LocusMap (locus_list)

Bases: 1ib5c.core.mixins.Picklable, 1ib5c.core.mixins.Annotatable, 1ibbc.core.
mixins.Loggable

Representation of an organized group of Locus objects.

locus_list
Ordered list of unique Locus objects in the LocusMap.

Type list of Locus objects

regions
Ordered list of region names, as strings, present in the LocusMap. This list is filled in only when the Locus
objects within the LocusMap have a ' region' key in their data attribute.

Type list of str

name_dict
Dict mapping Locus names as strings to the Locus object with that name. This dict is filled in only when
the Locus objects within the LocusMap have a 'name ' key in their data attribute.

Type dict(str -> Locus)

region_index dict
Maps a region name and an index within the region to a Locus object within the specified region. This
means that, for example,

locus_map.region_index_dict['Sox2'][3]

resolves to the Locus object that is the 4th Locus object of the Sox2 region in the LocusMap instance called
locus_map.

Type dict(str -> list of Locus objects)

hash to_index dict
Maps a Locus object’s hash to its index within locus_list.

Type dict(int -> int)

name_to_index_dict
Dict mapping Locus names as strings to their index within the LocusMap. This dict is filled in only when
the Locus objects within the LocusMap have a 'name ' key in their data attribute.

Type dict(str -> int)

Notes

Locus objects in a LocusMap are ordered by the total ordering implemented by the Locus class. See that class’s
implementation of __eq__ () and __1t__ () for more details.

LocusMap objects support the Loggable and Annotatable mixins. See the Examples section for an example.

6.1.

lib5¢c package 147



lib5¢c Documentation, Release 0.6.1

Examples

>>> from lib5c.core.loci import LocusMap

>>> locus_map = LocusMap.from_primerfile('test/primers.bed')
>>> locus_map.size()

1551

>>> locus_map.print_log()

LocusMap created

source primerfile: test/primers.bed

>>> locus_map.set_value ('test key', 'test wvalue')

>>> locus_map.get_value('test key')

'test value'

as_dict_of list_of dict()
Gets a primitive representation of the LocusMap, organized by region. Converts the locus_1list at-
tribute of this LocusMap from a list of Locus objects to dict whose keys are region names as strings and
whose values are list of dicts representing the Locus objects in each region.

Returns The primitive representation of the LocusMap.

Return type dict(str -> list of dict)

Examples

>>> from lib5c.core.loci import Locus, LocusMap
>>> locus_list = [Locus('chr3', 34109023, 34113109, region='Sox2'
Locus ('chr3', 34113147, 34116141, region='Sox2'
Locus ('chr3', 87282063, 87285636, region='Nest'
('chr3', 87285637, 87295935, region='Nest'

’

)
)V
)V
)]

Locus

>>> locus_map = LocusMap (locus_list)

>>> locus_map.as_dict_of_list_of_dict () == \
{'Sox2': [{'chrom': 'chr3', 'start': 34109023, 'end': 34113109,
'region': 'Sox2'},
{'chrom': 'chr3', 'start': 34113147, 'end': 34116141,
'region': 'Sox2'}],
'Nest': [{'chrom': 'chr3', 'start': 87282063, 'end': 87285636,
'region': 'Nest'},
{'chrom': 'chr3', 'start': 87285637, 'end': 87295935,
'region': 'Nest'}]}
True

as_list_of dict ()
Gets a primitive representation of the LocusMap. Converts the 1ocus_11ist attribute of this LocusMap
from a list of Locus objects to a list of dicts representing those Locus objects.

Returns The primitive representation of the LocusMap.

Return type list of dict

Examples

>>> from lib5c.core.loci import Locus, LocusMap
>>> locus_1list = [Locus('chr3', 34109023, 34113109, name='Sox2_ FOR_2"),
Locus ('chr3', 34113147, 34116141, name='Sox2 REV_4")]

(continues on next page)

148

Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

>>> locus_map = LocusMap (locus_list)
>>> locus_map.as_list_of_dict () == \

[{'"chrom': 'chr3', 'start': 34109023, 'end': 34113109,
'name': 'Sox2_FOR_2'},

{'chrom': 'chr3', 'start': 34113147, 'end': 34116141,
'name': 'Sox2_REV_4'}]

True

by_index (index)
Get the Locus object contained in this LocusMap with a specified index.

Parameters index (int) — The index of the Locus to get.
Returns The Locus object with the specified index.

Return type Locus

Examples

>>> from lib5c.core.loci import Locus, LocusMap
>>> locus_list = [Locus('chr3', 34109023, 34113109, name='Sox2_ FOR_2"),
Locus ('chr3', 34113147, 34116141, name='Sox2_ REV_4")]

>>> locus_map = LocusMap (locus_list)
>>> print (locus_map.by_index (1))
Locus chr3:34113147-34116141

name: Sox2_REV_4

by_name (name)
Get the Locus object contained in this LocusMap with a specified name.

Parameters name (str)— The name of the Locus to get.
Returns The Locus object with the specified name.

Return type Locus

Examples

>>> from lib5c.core.loci import Locus, LocusMap
>>> locus_list = [Locus('chr3', 34109023, 34113109, name='Sox2_ FOR_2"),
Locus ('chr3', 34113147, 34116141, name='Sox2_REV_4")]

>>> locus_map = LocusMap (locus_1list)
>>> print (locus_map.by_name ('Sox2_REV_4"))
Locus chr3:34113147-34116141

name: Sox2_REV_4

by_region_index (region, index)
Get the Locus object contained in this LocusMap with a specified index within a specified region. In other
words, the index th Locus of the region with name region.

Parameters

* region (str)— The name of the region to look for the Locus in.

6.1. lib5c package 149



lib5¢c Documentation, Release 0.6.1

e index (int)— The index of the desired Locus within the specified region.
Returns The specified Locus.

Return type Locus

Examples

>>> from lib5c.core.loci import Locus, LocusMap

>>> locus_list = [Locus('chr3', 34109023, 34113109, region='Sox2'),
Locus ('chr3', 34113147, 34116141, region='Sox2'"),

Locus ('chr3', 87282063, 87285636, region='Nestin'),

Locus ('chr3', 87285637, 87295935, region='Nestin')]

>>> locus_map = LocusMap (locus_1list)
>>> print (locus_map.by_region_index('Nestin', 1))
Locus chr3:87285637-87295935

region: Nestin

delete (index)

Creates a new LocusMap object that excludes the Locus at a specified index.
Parameters index (int) — The index of the Locus to exclude.
Returns The new LocusMap.

Return type LocusMap

Examples

>>> from lib5c.core.loci import Locus, LocusMap

>>> locus_list = [
Locus ('chr3', 34109023, 34113109, name='Sox2_ FOR_2"),
Locus ('chr3', 34113147, 34116141, name='Sox2_ REV_4"),
Locus ('chr3', 87282063, 87285636, name='Nestin_ REV_9'"),
Locus ('chr3', 87285637, 87295935, name='Nestin_ FOR_10")

>>> locus_map = LocusMap (locus_list)
>>> deleted_locus_map = locus_map.delete(2)
>>> deleted_locus_map.print_log()
LocusMap created
deleted locus at index 2 with name Nestin_REV_9
>>> for locus in deleted_locus_map:
.. print (locus)
Locus chr3:34109023-34113109
name: Sox2_FOR_2
Locus chr3:34113147-34116141
name: Sox2_REV_4
Locus chr3:87285637-87295935
name: Nestin FOR_10

extract_region (region)

Create a LocusMap representing the Locus objects in only one specified region of this LocusMap.
Parameters region (str) - The name of the region to extract.

Returns A new LocusMap restricted to the specified region.

Chapter 6.

lib5¢c




lib5¢c Documentation, Release 0.6.1

Return type LocusMap

Examples

>>> from lib5c.core.loci import Locus, LocusMap

>>> locus_list = [Locus('chr3', 34109023, 34113109, region='Sox2'"),
Locus ('chr3', 34113147, 34116141, region='Sox2'"),

Locus ('chr3', 87282063, 87285636, region='Nestin'),

Locus ('chr3', 87285637, 87295935, region='Nestin')]

>>> locus_map = LocusMap (locus_1list)
>>> extracted_locus_map = locus_map.extract_region('Sox2"')
>>> extracted_locus_map.print_log()
LocusMap created
extracted region Sox2
>>> for locus in extracted_locus_map:
print (locus)

Locus chr3:34109023-34113109
region: Sox2

Locus chr3:34113147-34116141
region: Sox2

extract_slice (desired_slice)
Gets a new LocusMap object representing a subset of the Locus objects in this LocusMap specified by a
slice.

Parameters desired_slice (slice)— The slice to use to subset this LocusMap.
Returns The new LocusMap.

Return type LocusMap

Notes

Since LocusMap objects are sorted, the returned LocusMap will always be sorted, regardless of the slice
direction.

Examples

>>> from lib5c.core.loci import Locus, LocusMap

>>> locus_list = [
Locus ('chr3', 34109023, 34113109, name='Sox2 FOR_2'"),
Locus ('chr3', 34113147, 34116141, name='Sox2_REV_4"'),
Locus ('chr3', 87282063, 87285636, name='Nestin_REV_9'"),
Locus ('chr3', 87285637, 87295935, name='Nestin FOR_10")

>>> locus_map = LocusMap (locus_list)
>>> sliced_map = locus_map[1l:3]
>>> sliced_map.print_log()
LocusMap created
sliced out slice(l, 3, None)
>>> for locus in sliced_map:
print (locus)

(continues on next page)

6.1. lib5c package 151



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

Locus chr3:34113147-34116141
name: Sox2_ REV_4

Locus chr3:87282063-87285636
name: Nestin_REV_9

classmethod from binfile (binfile)
Factory method that creates a LocusMap object from a BED file containing bin information.

Parameters binfile (str)— String reference to the bin file.
Returns LocusMap object parsed from the bin file.

Return type LocusMap

Examples

>>> from lib5c.core.loci import LocusMap

>>> locus_map = LocusMap.from_binfile('test/bins_new.bed')
>>> locus_map.size ()

1807

>>> locus_map.print_log()

LocusMap created

source binfile: test/bins_new.bed

classmethod from 1list (list_of locusmaps)
Factory method that creates a new LocusMap object from a list of existing LocusMap objects by concate-
nation.

Parameters list_of_locusmaps (1ist of LocusMap) — A list of LocusMap objects
to be concatenated.

Returns The concatenated LocusMap.

Return type LocusMap

Notes

This function should be slightly more efficient than iterative addition. Therefore, it is preferred to use

’summed_locus_map = LocusMap.from_list (list_of_locus_maps) ‘

over

’summed_locus_map = sum(list_of_locus_maps, LocusMap([]))

as evidenced by

> python -mtimeit
-s'from lib5c.core.loci import LocusMap'

-s'lm = LocusMap.from_primerfile(\"test/primers.bed\")"
-s'lm _list = [lm.extract_region(r) for r in lm.regions]' °
's = LocusMap.from_list(lm_list)'

10 loops, best of 3: 48.2 msec per loop

versus

152 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

> python —-mtimeit
-s'from lib5c.core.loci import LocusMap'
-s'lm = LocusMap.from_primerfile (\"test/primers.bed\")"
-s'lm_list = [lm.extract_region(r) for r in lm.regions]'
's = sum(1lm_list, LocusMap([]))"'

10 loops, best of 3: 174 msec per loop

Examples

>>> from lib5c.core.loci import LocusMap
>>> locus_map = LocusMap.from_primerfile('test/primers.bed")

>>> sox2_locus_map = locus_map.extract_region('Sox2")
>>> sox2_locus_map.size ()

265

>>> sox2_locus_map.get_regions ()

['"Sox2']

>>> k1f4_locus_map = locus_map.extract_region('K1f4")
>>> k1f4_locus_map.size()

251

>>> k1f4_locus_map.get_regions ()

['K1f4d"']

>>> summed_locus_map = LocusMap.from_ list ([sox2_locus_map,
k1f4_locus_map])

>>> summed_locus_map.print_log ()

LocusMap created

created from list

>>> summed_locus_map.size ()

516

>>> summed_locus_map.get_regions ()

['Sox2', 'KI1f4d']

>>> builtin_sum_result = sum([sox2_locus_map, klf4_locus_map],
LocusMap ([]))

>>> builtin_sum_result.size ()

516

>>> pbuiltin_sum_result.get_regions ()
["Sox2', 'K1f4']

classmethod from list_of dict (list_of dict)

Factory method that creates a LocusMap object from a list of dicts that represent the Loci that the Lo-

cusMap should be composed of.

Parameters list_of_dict (1ist of dict)-— A list of dicts, with each dict representing

a Locus that should be created and put into the LocusMap.

Returns A LocusMap whose Locus objects are equivalent to the dicts passed in

list_of_dict

Return type LocusMap

Examples

>>> from lib5c.core.loci import LocusMap
>>> list_of_dict = [{'chrom': 'chr3',

(continues on next page)

6.1. lib5c package

153




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

'start': 34109023,
'end': 34113109,
'name': 'Sox2_FOR_2'},
'chrom': 'chr3',
'start': 34113147,
'end': 34116141,
'name': 'Sox2_REV_4'}]

—~

>>> locus_map = LocusMap.from_list_of_dict(list_of_dict)
>>> locus_map.print_log()
LocusMap created
created from list of dict
>>> for locus in locus_map:
print (locus)

Locus chr3:34109023-34113109

name: Sox2_FOR_2
Locus chr3:34113147-34116141

name: Sox2_REV_4
>>> list_of_dict_dup = [{'chrom': 'chr3',
'start': 34109023,
'end': 34113109,
'name': 'Sox2_FOR_2'},
'chrom': 'chr3',
'start': 34113147,
'end': 34116141,
'name': 'Sox2_REV_4'},
'chrom': 'chr3',
'start': 34113147,
'end': 34116141,
'name': 'duplicate Locus!'}]

—_~

—_~

>>> locus_map_dup = LocusMap.from_list_of_dict (list_of_dict_dup)
Traceback (most recent call last):

ValueError: Locus objects in LocusMap must be unique

classmethod from primerfile (primerfile)

Factory method that creates a LocusMap object from a BED file containing primer information.
Parameters primerfile (str) - String reference to the primer file.
Returns LocusMap object parsed from the primer file.

Return type LocusMap

Examples

>>> from lib5c.core.loci import LocusMap

>>> locus_map = LocusMap.from primerfile('test/primers.bed")
>>> locus_map.size ()

1551

>>> locus_map.print_log()

LocusMap created

source primerfile: test/primers.bed

154

Chapter 6.

lib5¢c




lib5¢c Documentation, Release 0.6.1

get_index (name)
Get the index of the Locus object in this LocusMap with a specified name.

Parameters name (str)— The name of the Locus to get the index for.
Returns The index of the Locus object with the specified name.

Return type int

Examples

>>> from lib5c.core.loci import Locus, LocusMap
>>> locus_1list = [Locus('chr3', 34109023, 34113109, name='Sox2_ _FOR_2"),
Locus ('chr3', 34113147, 34116141, name='Sox2 REV_4"')]

>>> locus_map = LocusMap (locus_list)
>>> locus_map.get_index ('Sox2 REV_4")

get_index_by_ hash (hash_value)
Get the Locus object contained in this LocusMap with a specified hash.

Parameters hash_value (int)— The hash of the Locus object to find.

Returns The index of the desired Locus object within 1ocus_1list if it exists within this
LocusMap object, or None if it doesn’t.

Return type int or None

Examples

>>> from 1lib5c.core.loci import Locus, LocusMap
>>> locus_list = [Locus('chr3', 34109023, 34113109),
Locus ('chr3', 34113147, 34116141)]

>>> locus_map = LocusMap (locus_list)

>>> locus_hash = hash(Locus('chr3', 34113147, 34116141))
>>> locus_map.get_index_by_ hash (locus_hash)

1

>>> locus_map.get_index_by_hash(123) is None

True

get_region_sizes ()
Gets information about the number of Locus objects in each region.

Returns A dict mapping region names as strings to the number of Locus objects in that region.

Return type dict(str -> int)

Examples

>>> from lib5c.core.loci import Locus, LocusMap

>>> locus_list = [Locus('chr3', 34109023, 34113109, region='Sox2'),
Locus ('chr3', 34113147, 34116141, region='Sox2'"),
Locus ('chr3', 87282063, 87285636, region='Nestin')]

(continues on next page)

lib5¢c package 155



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

>>> locus_map = LocusMap (locus_list)
>>> locus_map.get_region_sizes () == {'Sox2': 2, 'Nestin': 1}
True

get_regions ()
Gets the regions spanned by the Locus objects in this LocusMap.

Returns The ordered list of region names.

Return type list of str

Examples

>>> from lib5c.core.loci import Locus, LocusMap

>>> locus_list = [Locus('chr3', 34109023, 34113109, region='Sox2'),
Locus ('chr3', 34113147, 34116141, region='Sox2'"),

Locus ('chr3', 87282063, 87285636, region='Nestin'),

Locus ('chr3', 87285637, 87295935, region='Nestin')]

>>> locus_map = LocusMap (locus_list)
>>> locus_map.get_regions ()
["Sox2', 'Nestin']

size ()
Get the number of Locus objects in the LocusMap.

Returns The number of Locus objects in the LocusMap.

Return type int

Examples

>>> from 1lib5c.core.loci import Locus, LocusMap
>>> locus_list = [Locus('chr3', 34109023, 34113109),
Locus ('chr3', 34113147, 34116141)]

>>> locus_map = LocusMap (locus_list)
>>> locus_map.size()

to_bedfile (filename, fields=("name’, ))
Write this LocusMap to disk as a BED-formatted file.

Parameters
* filename (str) — String reference to the file to write to.

e fields (I1ist of str, optional)— Specify additional columns in the BED file
after the traditional chromosome, start, end. Columns should be specified in order as
strings corresponding to keys in the data attributes on the Locus objects that make up
this LocusMap.

156 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Examples

>>> from lib5c.core.loci import Locus, LocusMap
>>> 1ml = LocusMap ([
Locus ('chr3', 34109023, 34113109, name='5C_329 Sox2_ FOR_2"),
Locus ('chr3', 34113147, 34116141, name='5C_329 Sox2 REV_4")
1)

>>> 1lml.to_bedfile('test/core_test_locusmap.bed')
>>> 1m2 = LocusMap.from_primerfile('test/core_test_locusmap.bed")
>>> for locus in 1m2:
. print (locus)
Locus chr3:34109023-34113109

name: 5C_329_Sox2_FOR_2

number: 2

orientation: 3'

region: Sox2

strand: +
Locus chr3:34113147-34116141

name: 5C_329_Sox2_REV_4

number: 4

orientation: 5'

region: Sox2

strand: -

lib5c.core.mixins module

class lib5c.core.mixins.Annotatable
Bases: object

Mixin class for storing and accessing arbitrary annotation information on object instances.

data
Dict to store arbitrary annotation data. Typically, the keys will be strings.
Type dict
Notes

This mixin requires initialization. Subclasses must explicitly call

Annotatable._ init__ (self)

somewhere in their constructor.

When a subclass’s bound functions return a new instance, the following guidelines are recommended:
* addition/summing operations: create a new dict and update it
* other operations: copy a reference to data into the new instance

get_data()
Get this instance’s data attribute.

Returns This instance’s dat a attribute.

Return type dict

6.1. lib5c package 157



lib5¢c Documentation, Release 0.6.1

get_value (key)
Get the value of some key in data. This is equivalent to a get-or-None function for data [key].

Parameters key (str)— The key to search for in this instance’s data.
Returns The value of data [key], or None if the key does not exist.

Return type any

Examples

>>> from lib5c.core.loci import Locus

>>> locus = Locus('chr3', 34109023, 34113109, num_genes=10)
>>> locus.get_value ('num_genes')

10

>>> locus.get_value ('num_ctcf_sites') is None

True

set_data (data)
Overwrite this instance’s data attribute with a passed dict.

Parameters data (dict)— The dict to put in this instance’s data attribute.

set_value (key, value)
Set the value for a specific key in this instance’s data attribute.

Parameters
* key (str) - The key to set.
¢ value (any) - The value to store.

class lib5c.core.mixins.Loggable
Bases: object

Mixin class for supporting object event logging.

log
Each string in the list describes an event in this object’s history.

Type list of str

Notes

This mixin requires initialization. Subclasses must explicitly call

Loggable.__init__ (self)

somewhere in their constructor.

When a subclass’s bound functions return a new instance, the following guidelines are recommended:
* addition/summing operations: use the empty log of the new instance
* other operations: copy a reference to 1og into the new instance

get_log ()
Get this instance’s log.

Returns This instance’s log.

Return type list of str

158 Chapter 6

. lib5c




lib5¢c Documentation, Release 0.6.1

log_event (event)
Add an event to the log.

Parameters event (str)— A string describing the event.

print_log ()
Print this instance’s log to the console.

class lib5c.core.mixins.Picklable
Bases: object

Mixin class for providing easy reading and writing of instances to disk via the pickle module.

classmethod from pickle (filename)
Create a new instance of the class from a pickle file.

Parameters filename (str) — String reference to a pickle file to read from.
Returns Unpickled instance.
Return type cls

to_pickle (filename)
Write this instance to a pickle file.

Parameters filename (str) — String reference to the file to write this instance to.

Module contents

lib5c.operators package

Submodules
lib5c.operators.base module

class lib5c.operators.base.InteractionMatrixOperator
Bases: object

Abstract base class for objects that operate on single InteractionMatrix objects.

Subclasses should implement an apply_inplace () function that takes in an InteractionMatrix object and
returns an InteractionMatrix object but is allowed to operate in-place. Additional parameters requried by the
apply_inplace () function can be either passed to the function as = xkwargs or stored in properties of the
InteractionMatrixOperator subclass.

apply (target, **kwargs)
Apply this operator to a target InteractionMatrix, returning a copy.

Parameters
* target (InteractionMatrix)— The InteractionMatrix object to operate on.
* kwargs (other keyword arguments)— To be utilized by subclasses.
Returns The result of applying the operation.
Return type InteractionMatrix

apply_ by region (target, **kwargs)
Apply this operator independently to each region of a target InteractionMatrix.

Parameters

6.1. lib5c package 159



lib5¢c Documentation, Release 0.6.1

* target (InteractionMatrix)— The InteractionMatrix object to operate on.
* kwargs (other keyword arguments)— To be utilized by subclasses.
Returns The result of applying the operation.

Return type [InteractionMatrix

Notes

To support logging, we used the following pattern:
1. Log on the target object to indicate regional application
2. Maintain a list of results of the application
3. Instantiate
4. Get the first result from the list and copy its log to the instance
5. Log on the result object to indicate end of regional application
6. Return the instance

If yousee 'applying by region' withno closing 'done applying by region', thatindic-
tates that you are looking at a target object for an apply-by-region operation that was not done in-place.
Such a log line can be ignored.

If you see 'applying by region' with a closing 'done applying by region', that indi-
cates that you are looking at a result object for an apply-by-region operation that was not done in-place.
The lines in the block show the log for only the first region, but each region was processed identically.

apply_inplace (target, **kwargs)
Apply this operator to a target InteractionMatrix in-place.

Parameters
* target (InteractionMatrix)— The InteractionMatrix object to operate on.
* kwargs (other keyword arguments)— To be utilized by subclasses.
Returns The result of applying the operation.
Return type InteractionMatrix

class lib5c.operators.base.MultiInteractionMatrixOperator
Bases: object

Abstract base class for objects that operate on multiple InteractionMatrix objects.

Subclasses should implement an apply_inplace () function that takes in an list of InteractionMatrix objects
and returns a list of InteractionMatrix objects but is allowed to operate in-place. Additional parameters requried
by the apply_inplace () function can be either passed to the function as » xkwargs or stored in properties
of the MultilnteractionMatrixOperator subclass.

apply (targets, **kwargs)
Apply this operator to a list of target InteractionMatrix objects.

Parameters

* targets (list of InteractionMatrix)— The list of InteractionMatrix objects
to operate on simultaneously.

* kwargs (other keyword arguments)— To be utilized by subclasses.

Returns The result of applying the operation.

160 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Return type list of InteractionMatrix

apply_by_region (targets, **kwargs)
Apply this operator independently to each region of the target InteractionMatrix objects.

Parameters

* targets (list of InteractionMatrix)— The list of InteractionMatrix objects
to operate on simultaneously.

* kwargs (other keyword arguments)— To be utilized by subclasses.
Returns The result of applying the operation.

Return type list of InteractionMatrix

Notes

To support logging, we used the following pattern:
1. Log on all target objects to indicate regional application
2. Maintain a dict of list of results of the application
3. Instantiate the results
4. Get the first region of the first result from the dict of lists and copy its log to each instance
5. Log on all result objects to indicate end of regional application
6. Return the instances

Ifyousee 'applying by region' withnoclosing 'done applying by region', thatindic-
tates that you are looking at a target object for an apply-by-region operation that was not done in-place.
Such a log line can be ignored.

If you see 'applying by region' with a closing 'done applying by region', that indi-
cates that you are looking at a result object for an apply-by-region operation that was not done in-place.
The lines in the block show the log for only the first region, but each region was processed identically.

apply_inplace (targets, **kwargs)
Apply this operator to a target InteractionMatrix in-place.

Parameters

e targets (1ist of InteractionMatrix)— The list of InteractionMatrix objects
to operate on simultaneously.

* kwargs (other keyword arguments)— To be utilized by subclasses.
Returns The result of applying the operation.

Return type list of InteractionMatrix

lib5c.operators.modeling module

class lib5c.operators.modeling.EmpiricalPvalueOperator
Bases: 1ib5c.operators.base. InteractionMatrixOperator

Operator for assigning empirical right-tail p-values to all interactions in an InteractionMatrix.

apply_inplace (farget, **kwargs)
Transform the target InteractionMatrix, setting its interactions to their emprical right-tail p-values.

6.1. lib5c package 161



lib5¢c Documentation, Release 0.6.1

Parameters
* target (InteractionMatrix)— The InteractionMatrix object to transform.
* kwargs (other keyword arguments)— To be utilized by subclasses.
Returns The transformed InteractionMatrix.

Return type InteractionMatrix

Notes
This transformation uses the kind="'strict' kwarg of scipy.stats.percentileofscore(),

which means the resulting values represent the fraction of all the values that are greater than or equal to
the value at that position.

Examples

>>> import numpy as np
>>> from lib5c.core.interactions import InteractionMatrix
>>> from lib5c.operators.modeling import EmpiricalPvalueOperator
>>> X = np.arange (16, dtype=float) .reshape((4, 4))
>>> im = InteractionMatrix (X + X.T)
>>> print (im)
InteractionMatrix of size 4
[[ 0. 5. 10. 15.]
[ 5. 10. 15. 20.]
[10. 15. 20. 25.]
[15. 20. 25. 30.]]
>>> epo = EmpiricalPvalueOperator ()
>>> result = epo.apply(im)
>>> print (result)
InteractionMatrix of size 4
[[1. 0.9 0.8 0.6]
[0.9 0.8 0.6 0.4]
[0.8 0.6 0.4 0.2]
[0.6 0.4 0.2 0.11]
>>> result.print_log()
InteractionMatrix created
transformed to empirical p-values

lib5c.operators.gnorm module

class lib5c.operators.gnorm.QuantileNormalizer (tie='lowest’)
Bases: 1ib5c.operators.base.MultilInteractionMatrixOperator

Operator for quantile normalizing InteractionMatrix objects.
tie
How this QuantileNormalizer will resolve ties. If ' Llowest ', it will set all tied entries to the value of the

lowest rank. If 'average', it will set all tied entries to the average value across the tied ranks.

Type {‘lowest’, ‘average’}

162 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Notes

This operator will first standardize the target InteractionMatrix objects, including propagation of nan’s, if they
have locusmap attributes defined. Otherwise, the target InteractionMatrix objects must be the same size.

apply_inplace (targets, **kwargs)
Quantile normalizes the target InteractionMatrix objects.

Parameters

e targets (list of InteractionMatrix) — The InteractionMatrix objects to
quantile normalize. These must either have 1ocusmap attributes or be the same size.

* kwargs (other keyword arguments)— To be utilized by subclasses.

Returns The standardized InteractionMatrix objects.

Return type list of InteractionMatrix

Examples

>>>
>>>
>>>
>>>
>>>

>>>

>>>

>>>
>>>

)
[

>>>

[[4
[
[4

>>>

[3.

import numpy as np

from lib5c.core.interactions import InteractionMatrix
from lib5c.operators.gnorm import QuantileNormalizer
g = QuantileNormalizer ()

iml = InteractionMatrix ([[ 5., np.nan, 3.1,
[np.nan, 2., np.nan],
[ 3., np.nan, 4.11)
im2 = InteractionMatrix ([[ 4., np.nan, 4.1,
[np.nan, 1., np.nan]j,
[ 4., np.nan, 2.11)
im3 = InteractionMatrix ([[ 3., np.nan, 6.1,
[np.nan, 4., np.nanlj,
[ 6., np.nan, 8.11)
results = g.apply([iml, im2, im3])

print (results[0])

InteractionMatrix of size 3

.66666667 nan 3. ]
nan 2. nan]
nan 4.66666667]]
print (results[1])

InteractionMatrix of size 3

.66666667 nan 4.66666667]

nan 2. nan]
.66666667 nan 3. 11
print (results([2])

InteractionMatrix of size 3

>>>
>>>
>>>

[[2. nan 4.66666667]
[ nan 3. nan]
[4.66666667 nan 5.66666667] ]

>>> import numpy as np

from lib5c.core.interactions import InteractionMatrix
from lib5c.core.loci import Locus, LocusMap
from lib5c.operators.gnorm import QuantileNormalizer

(continues on next page)

6.1. lib5c package

163




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

>>> g = QuantileNormalizer ()
>>> 1m = LocusMap ([
Locus ('chr3', 34109023, 34113109),
Locus ('chr3', 34113147, 34116141),
Locus ('chr3', 87282063, 87285636)
Locus ('chr3', 87285637, 87295935)

4

>>> iml = InteractionMatrix([[ O., 5., 10., 15.1,
[ 5., 10., 15., 20.1,
[ 10., 15., 20., 25.1,
[ 15., 20., 25., 30.]], locusmap=1m)

>>> im2 = InteractionMatrix ([[ 1., np.nan, 11.1,

[np.nan, 11., 21.1,

[ 11., 21., 16.11, locusmap=lm[:3])
>>> results = g.apply([iml, im2])

>>> print (results([0])
InteractionMatrix of size 3

[[ 0.5 nan 10.5]

[ nan 10.5 15.5]

[10.5 15.5 20.5]11
Associated LocusMap:
LocusMap comprising 3 loci

Range: chr3:34109023-34113109 to chr3:87282063-87285636

>>> print (results([1])
InteractionMatrix of size 3

[[ 0.5 mnan 10.5]

[ nan 10.5 20.5]

[10.5 20.5 15.5]1
Associated LocusMap:
LocusMap comprising 3 loci

Range: chr3:34109023-34113109 to chr3:87282063-87285636

>>> results[0] .print_log()
InteractionMatrix created
standardized with propagate_nan=True
deleted locus at index 3
gnormed with tie=lowest

>>> import numpy as np

>>> from lib5c.core.interactions import InteractionMatrix

>>> from lib5c.operators.gnorm import QuantileNormalizer

>>> from lib5c.core.loci import Locus, LocusMap

>>> locus_list = [Locus('chr3', 34109023, 34113109, region='Sox2'),
Locus ('chr3', 34113147, 34116141, region='Sox2'"),

Locus ('chr3', 87282063, 87285636, region='Nestin'),

Locus ('chr3', 87285637, 87295935, region='Nestin')]

>>> locus_map = LocusMap (locus_list)
>>> X = np.arange (16, dtype=float) .reshape((4, 4))
>>> iml = InteractionMatrix (X + X.T, locusmap=locus_map)
>>> print (iml)
InteractionMatrix of size 4
[[ 0. 5. 10. 15.]
[ 5. 10. 15. 20.]

(continues on next page)

164

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

[10. 15. 20. 25.]
[15. 20. 25. 30.1]
Associated LocusMap:
LocusMap comprising 4 loci
Range: chr3:34109023-34113109 to chr3:87285637-87295935
Regions: ['Sox2', 'Nestin']
>>> im2 = InteractionMatrix ((X + X.T) + 1, locusmap=locus_map)
>>> print (im2)
InteractionMatrix of size 4
([ 1. 6. 11. 16.]
[ 6. 11. 16. 21.]
[11. 16. 21. 26.]
[16. 21. 26. 31.]]
Associated LocusMap:
LocusMap comprising 4 loci
Range: chr3:34109023-34113109 to chr3:87285637-87295935

Regions: ['Sox2', 'Nestin']
>>> g = QuantileNormalizer ()
>>> results = g.apply_by_region([iml, im2])

>>> print (results([0])
InteractionMatrix of size 4

([ 0.5 5.5 0. 0. 1]
[ 5.5 10.5 0. 0. 1]
[ 0. 0. 20.5 25.5]
[ 0. 0. 25.5 30.51]

Associated LocusMap:

LocusMap comprising 4 loci
Range: chr3:34109023-34113109 to chr3:87285637-87295935
Regions: ['Sox2', 'Nestin']

>>> print (results[1])

InteractionMatrix of size 4

[[ 0.5 5.5 0. 0. 1]
[ 5.5 10.5 0. 0. 1
[ 0. 0. 20.5 25.5]
[ 0. 0. 25.5 30.51]

Associated LocusMap:
LocusMap comprising 4 loci
Range: chr3:34109023-34113109 to chr3:87285637-87295935
Regions: ['Sox2', 'Nestin']
>>> results[0] .print_log()
InteractionMatrix created
applying by region
extracted region Sox2
standardized with propagate_nan=True
gnormed with tie=lowest
done applying by region

lib5c.operators.standardization module

class lib5c.operators.standardization.Standardizer (propagate_nan=True)
Bases: 1ib5c.operators.base.MultiInteractionMatrixOperator

Operator for standardizing InteractionMatrix objects. This process reduces all InteractionMatrix objects passed
to the lowest common denominator of loci. In other words, loci that are not present in every InteractionMatrix
object will be discarded from all InteractionMatrix objects.

6.1. lib5c package 165



lib5¢c Documentation, Release 0.6.1

propagate_nan
If True, nan values will be propagated across InteractionMatrix objects.

Type bool

Notes

The InteractionMatrix objects supplied must have 1ocusmap attributes.

apply_inplace (targets, **kwargs)
Apply the standardization operation to the target InteractionMatrix objects.

Parameters

* targets (list of InteractionMatrix) — The InteractionMatrix objects to
standardize.

* kwargs (other keyword arguments)— To be utilized by subclasses.
Returns The standardized InteractionMatrix objects.

Return type list of InteractionMatrix

Examples

>>> import numpy as np
>>> from lib5c.core.interactions import InteractionMatrix
>>> from lib5c.core.loci import Locus, LocusMap
>>> from lib5c.operators.standardization import Standardizer
>>> s = Standardizer ()
>>> Im = LocusMap ([
Locus ('chr3', 34109023, 34113109)
Locus ('chr3', 34113147, 34116141),
Locus ('chr3', 87282063, 87285636),
Locus ('chr3', 87285637, 87295935)

4

>>> iml = InteractionMatrix([[ O., 5., 10., 15.1,

[ 5., 10., 15., 20.1,

([ 10., 15., 20., 25.1,

[ 15., 20., 25., 30.]11, locusmap=lm)
>>> im2 = InteractionMatrix ([[ 1., np.nan, 11.71,

[np.nan, 11., 16.1,

[ 11., 16., 21.11, locusmap=lm[:3])
>>> results = s.apply([iml, im2])

>>> print (results([0])
InteractionMatrix of size 3

[[ 0. nan 10.]
[nan 10. 15.]
[10. 15. 20.71]

Associated LocusMap:
LocusMap comprising 3 loci
Range: chr3:34109023-34113109 to chr3:87282063-87285636
>>> print (results([1])
InteractionMatrix of size 3
[[ 1. nan 11.]

(continues on next page)

166 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

[nan 11. 16.]

[11. 16. 21.]1]
Associated LocusMap:
LocusMap comprising 3 loci

Range: chr3:34109023-34113109 to chr3:87282063-87285636

>>> results[0] .print_log()
InteractionMatrix created
standardized with propagate_nan=True
deleted locus at index 3

lib5c.operators.trimming module

class lib5c.operators.trimming.InteractionTrimmer (value_threshold_lower=None,

value_threshold_upper=None, lo-
cus_percentage_threshold_lower=None,
locus_percentage_threshold_upper=None,
global_percentage_threshold_lower=None,
global_percentage_threshold_upper=None,
locus_fold_threshold_lower=None,
locus_fold_threshold_upper=None,
global_fold_threshold_lower=None,

global_fold_threshold_upper=None)
Bases: 1ib5c.operators.base. InteractionMatrixOperator

Operator for removing specific interactions from an InteractionMatrix object according to specified criteria by
setting their values to np . nan.

value_threshold_ lower
If not None, interactions with values lower than this number will be removed.

Type float or None

value_threshold upper
If not None, interactions with values higher than this number will be removed.

Type float or None

locus_percentage_threshold_lower
If not None, this percentage of interactions at each locus with the lowest values will be removed.

Type float or None

locus_percentage_threshold_ upper
If not None, this percentage of interactions at each locus with the highest values will be removed.

Type float or None

global_percentage_threshold_lower
If not None, this percentage of interactions with the lowest values will be removed.

Type float or None

global_percentage_threshold_ upper
If not None, this percentage of interactions with the highest values will be removed.

Type float or None

6.1. lib5c package 167



lib5¢c Documentation, Release 0.6.1

locus_fold threshold lower
If not None, interactions whose values are less than this many times the median value across either partic-
ipating locus will be removed.

Type float or None

locus_fold threshold upper
If not None, interactions whose values are more than this many times the median value across either
participating locus will be removed.

Type float or None

global_fold_threshold_lower
If not None, interactions whose values are less than this many times the median value across all interactions
will be removed.

Type float or None

global_fold_threshold_upper
If not None, interactions whose values are more than this many times the median value across all interac-
tions will be removed.

Type float or None

apply_inplace (target, **kwargs)
Apply the trimming operation to the target InteractionMatrix.

Parameters
* target (InteractionMatrix)— The InteractionMatrix object to trim.
* kwargs (other keyword arguments)— To be utilized by subclasses.
Returns The trimmed InteractionMatrix.

Return type InteractionMatrix

Examples

>>>
>>>
>>>

>>>

import numpy as np
from lib5c.core.interactions import InteractionMatrix
from lib5c.operators.trimming import InteractionTrimmer

>>> X = np.arange (16, dtype=float) .reshape((4, 4))
>>> im = InteractionMatrix (X + X.T)
>>> print (im)

InteractionMatrix of size 4

[[ 5. 10. 15.]

[ 10. 15. 20.]

[10. 15. 20. 25.]

[15. 20. 25. 30.]]
>>> trimmer = InteractionTrimmer (value_threshold_lower=5.0)
>>> print (trimmer.apply (im))

InteractionMatrix of size 4

[[nan nan 10. 15.]
[nan 10. 15. 20.]
[10. 15. 20. 25.]
[15. 20. 25. 30.1]
>>> trimmer = InteractionTrimmer (value_threshold_upper=25.0)

print (trimmer.apply (im))

InteractionMatrix of size 4

(continues on next page)

168

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

[[ 0. 5. 10.
[ 5. 10. 15.
[10. 15. 20.
[15. 20. nan

>>> trimmer =

15.]
20.]
nan]
nan]]

InteractionTrimmer (locus_percentage_threshold_lower=25.0)

>>> print (trimmer.apply (im))
InteractionMatrix of size 4

[[nan nan nan nan]
[nan 10. 15. 20.]
[nan 15. 20. 25.]
[nan 20. 25. 30.]]

>>> trimmer = InteractionTrimmer (locus_percentage_threshold_upper=75.0)
>>> print (trimmer.apply (im))

InteractionMatrix of size 4

([ 0. 5. 10.
[ 5. 10. 15.
[10. 15. 20.

[nan nan nan
>>> trimmer =

nan]
nan]
nan]
nan] ]

InteractionTrimmer (global_percentage_threshold_lower=25.0)

>>> print (trimmer.apply (im))
InteractionMatrix of size 4

[[nan nan nan 15.]
[nan nan 15. 20.]
[nan 15. 20. 25.]
[15. 20. 25. 30.]]

>>> trimmer = InteractionTrimmer (global_percentage_threshold upper=75.0)
>>> print (trimmer.apply (im))

InteractionMatrix of size 4

[[ 0. 5. 10. 15.]
[ 5. 10. 15. nan]
[10. 15. nan nan]
[15. nan nan nan]]

>>> trimmer = InteractionTrimmer (locus_fold_threshold lower=0.5)
>>> print (trimmer.apply (im))

InteractionMatrix of size 4

[[nan nan 10. 15.]
[nan 10. 15. 20.]
[10. 15. 20. 25.]
[15. 20. 25. 30.]]

>>> trimmer = InteractionTrimmer (locus_fold_threshold_upper=2.0)
>>> print (trimmer.apply (im))

InteractionMatrix of size 4

[[ 0. 5. 10. nan]
[ 5. 10. 15. 20.]
[10. 15. 20. 25.]
[nan 20. 25. 30.]]

>>> trimmer = InteractionTrimmer (global_fold_threshold_lower=0.25)
>>> print (trimmer.apply (im))

InteractionMatrix of size 4

[[nan 5. 10. 15.]
[ 5. 10. 15. 20.]
[10. 15. 20. 25.]
[15. 20. 25. 30.]]

>>> trimmer = InteractionTrimmer (global_ fold_threshold_upper=2.0)
>>> result = trimmer.apply (im)

>>> print (result)

InteractionMatrix of size 4

(continues on next page)

6.1. lib5c package

169




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

[[ 0. 5. 10. 15.]
[ 5. 10. 15. 20.]
[10. 15. 20. 25.]
[15. 20. 25. nan]]

>>> result.print_log()

InteractionMatrix created

interactions trimmed with:
global_fold_threshold_upper=2.0

class lib5c.operators.trimming.LocusTrimmer (sum_threshold_upper=None,
sum_threshold_lower=None,
max_threshold=None, min_threshold=None,
percentage_threshold_lower=None,
percentage_threshold_upper=None,
fold_threshold_upper=None,
fold_threshold_lower=None)

Bases: 1ib5c.operators.base.InteractionMatrixOperator

Operator for removing Loci from an InteractionMatrix object according to specified criteria.

sum_threshold upper
If not None, Loci whose row sums are greater than this value will be removed.

Type float or None

sum_threshold lower
If not None, Loci whose row sums are less than this value will be removed.

Type float or None

max_threshold
If not None, Loci containing at least one interaction above this value will be removed.

Type float or None

min threshold
If not None, Loci containing at least one interaction below this value will be removed.

Type float or None

percentage_threshold lower
If not None, this percentage of of the Loci with the lowest row sums will be removed.

Type float or None

percentage_threshold upper
If not None, this percentage of of the Loci with the highest row sums will be removed.

Type float or None

fold_threshold upper
If not None, Loci whose row sums are more than this many times the median row sum will be removed.

Type float or None

fold _threshold lower
If not None, Loci whose row sums are less than this many times the median row sum will be removed.

Type float or None

apply_inplace (target, **kwargs)
Apply the trimming operation to the target InteractionMatrix.

170 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Parameters
* target (InteractionMatrix)— The InteractionMatrix object to trim.
* kwargs (other keyword arguments)— To be utilized by subclasses.
Returns The trimmed InteractionMatrix.

Return type InteractionMatrix

Examples

>>> import numpy as np

>>> from lib5c.core.interactions import InteractionMatrix

>>> from lib5c.operators.trimming import LocusTrimmer

>>> X = np.arange (16, dtype=float) .reshape((4, 4))

>>> im = InteractionMatrix (X + X.T)

>>> print (im)

InteractionMatrix of size 4

[[ 0. 5. 10. 15.]
[ 5. 10. 15. 20.]
[10. 15. 20. 25.]
[15. 20. 25. 30.]]

>>> locus_trimmer = LocusTrimmer (sum_threshold_lower=35)

>>> print (locus_trimmer.apply (im))

InteractionMatrix of size 3

[[10. 15. 20.]
[15. 20. 25.]
[20. 25. 30.]]
>>> locus_trimmer = LocusTrimmer (percentage_threshold_lower=50.0)

>>> print (locus_trimmer.apply (im))
InteractionMatrix of size 2
[[20. 25.]
[25. 30.1]
>>> locus_trimmer = LocusTrimmer (sum_threshold_upper=80.0)
>>> print (locus_trimmer.apply (im))
InteractionMatrix of size 3

([ 0. 5. 10.]
[ 5. 10. 15.]
[10. 15. 20.1]

>>> locus_trimmer = LocusTrimmer (percentage_threshold_upper=50.0)
>>> print (locus_trimmer.apply (im))
InteractionMatrix of size 2

[[ O. 5.]
[ 5. 10.1]
>>> locus_trimmer = LocusTrimmer (min_threshold=0.0)

>>> print (locus_trimmer.apply (im))
InteractionMatrix of size 3

[[10. 15. 20.]
[15. 20. 25.]
[20. 25. 30.11
>>> locus_trimmer = LocusTrimmer (max_threshold=30.0)

>>> print (locus_trimmer.apply (im))
InteractionMatrix of size 3

([ 0. 5. 10.]
[ 5. 10. 15.]
[10. 15. 20.1]

>>> locus_trimmer = LocusTrimmer (fold_threshold lower=0.5)

(continues on next page)

6.1. lib5c package 171



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

>>> print (locus_trimmer.apply (im))
InteractionMatrix of size 3
[[10. 15. 20.]

[15. 20. 25.]

[20. 25. 30.]]
>>> locus_trimmer = LocusTrimmer (fold_threshold upper=1.5)
>>> result = locus_trimmer.apply (im)
>>> result.print_log()
InteractionMatrix created
loci trimmed with:

fold_threshold_upper=1.5

deleted locus at index 3
>>> print (result)
InteractionMatrix of size 3
[[ 0. 5. 10.]

[ 5. 10. 15.]
[10. 15. 20.1]1
>>> result = locus_trimmer.apply_inplace (im)

>>> im.print_log ()
InteractionMatrix created
loci trimmed with:
fold_threshold_upper=1.5

deleted locus at index 3
>>> print (im)
InteractionMatrix of size 3
[[ O. 5. 10.]

[ 5. 10. 15.]

[10. 15. 20.1]

>>> import numpy as np

>>> from lib5c.core.interactions import InteractionMatrix
>>> from lib5c.operators.trimming import LocusTrimmer

>>> from lib5c.core.loci import Locus, LocusMap

>>> locus_list = [Locus('chr3', 34109023, 34113109, region='Sox2'"),

Locus
Locus

>>> locus_map = LocusMap (locus_list)

>>> X = np.arange (16, dtype=float) .reshape((4, 4))

>>> im = InteractionMatrix (X + X.T, locusmap=locus_map)

>>> im.matrix

matrix([[ 0., 5., 10., 15.1,
[ 5., 10., 15., 20.7,
[10., 15., 20., 25.7,
[15., 20., 25., 30.11)

('chr3', 34113147, 34116141, region='Sox2'),
Locus ('chr3', 87282063, 87285636, region='Nestin'),
('"chr3', 87285637, 87295935, region='Nestin')]

>>> locus_trimmer = LocusTrimmer (percentage_threshold_lower=50.0)

>>> result = locus_trimmer.apply_by_region (im)
>>> print (result)
InteractionMatrix of size 2
[[10. O0.]
[ 0. 30.1]
Associated LocusMap:
LocusMap comprising 2 loci

Range: chr3:34113147-34116141 to chr3:87285637-87295935

Regions: ['Sox2', 'Nestin']

(continues on next page)

172

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

>>> result.print_log()

InteractionMatrix created

applying by region

extracted region Sox2

loci trimmed with:
percentage_threshold_lower=50.0

deleted locus at index 0

done applying by region

Module contents

lib5c.parsers package

Submodules
lib5c.parsers.bed module

Module for parsing .bed files.

lib5c.parsers.bed.load_features (bedfile, id_index=None, value_index=None, bound-

aries=None, strict=True)
Loads the features from a .bed file into dicts and returns them.

Parameters
* bedfile (str)— String reference to location of .bed file to load features from.
* id_index (int) - If passed, indicates the column index of the id field.
* value_index (int) - If passed, indicates the column index of the value field.

* boundaries (1ist of dicts) - If passed, features will only be loaded if they inter-
sect at least one of the features in this list. The features should be represented as dicts with
the following structure:

{

'chrom': str,
'start': int,
'end' : int

* strict (boolean) - If True, there must not be any incomplete lines in the bedfile.
Returns

The keys are chromosome names. The values are lists of features for that chromosome. The
features are represented as dicts with the following structure:

{

'chrom': str,

'start': int,

'end' : int,

'id! : str or None,
'value': float or None

6.1. lib5c package 173



lib5¢c Documentation, Release 0.6.1

The ‘id’ and ‘value’ fields may be None if no feature ID’s were provided in the BED file, but the

keys will always be present in the returned dict.

Return type dict of lists of dicts

Notes

The parser will attempt to guess the column indices of the id and value fields based on the number of columns

and the types of the column entries.

lib5c.parsers.bed.main ()

lib5c.parsers.bias module

Module for parsing bias vector files.

lib5c.parsers.bias.load_bias_vector (bias_file, pixelmap)

Loads in bias vectors from a bias vector file.

Parameters

* bias_file (str) — String reference to the location of a .bias file to load bias vectors

from.

* pixelmap (Dict[str, List[Dict[str, Any]]])— A primermap or pixelmap
specifying the information about the regions and loci whose bias factors are contained in the

bias_file.

Returns The keys are region names as strings, the values are the one-dimensional bias vectors for

that region.

Return type Dict[str, np.ndarray]

lib5c.parsers.config module

Module for wrappers around ConfigParser for parsing config files.

lib5c.parsers.config.parse_config (configfile, name)
Parses a section from a config file into a dict.

Parameters

* configfile (str)— The config file to parse.

* name (str)— The section name to parse.
Returns The data.

Return type dict

lib5c.parsers.counts module

Module for parsing .counts files.

174

Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

lib5c.parsers.counts.load_cis_trans_counts (countsfile, primermap,
name_parser=<function de-
fault_primer_parser>, force_nan="always’,
region_order=None)
Loads the counts values from a primer-primer pair .counts file into a single square, symmetric array, and returns

1t.
Parameters
* countsfile (str)— String reference to location of .counts file to load counts from.

* primermap (Dict [str, List[Dict[str, Any]]])- The keys of the outer dict
are region names. The values are lists, where the 7 th entry represents the ¢ th primer in that
region. Primers are represented as dicts with the following structure:

{

'chrom' : str,
'start' : int,
'end' : int

See 1ib5c.parsers.primers.get_primermap ().

* name_parser (Optional[Callable([str], Dict[str, Any]]]) — Func-
tion that takes in the primer names in the countsfile and returns a dict containing key-value
pairs containing information required to identify the primer. At a minimum, this dict must
have the following structure:

{

'region': str

This information is necessary to deduce what region a given primer in the countsfile belongs
to.

* force_nan (Optional[str]) — If ‘always’ is passed and if the primermap contains
strand information, impossible ligations will be always set to nan. If ‘implicit’ is passed,
impossible ligations will be set to nan when implied by the strand information in the
primermap, but not when the ligations are explicitly present in the countsfile. If ‘never’
is passed, strand information will be ignored and impossible ligations will not be identified.

* region_order (Optional[List [str]])—If passed, this list will be used to deter-
mine the order in which the regions will be concatenated in. If not passed, the regions will
be concatenated in order of genomic coordinate.

Returns The square, symmetric array of counts.
Return type np.ndarray

lib5c.parsers.counts.load_counts (countsfile, primermap, force_nan=’always’, dtype=<class
float’>)
Loads the counts values from a primer-primer pair .counts file into square, symmetric arrays and returns them.

Parameters
* countsfile (str) - String reference to location of .counts file to load counts from.

* primermap (Dict [str, List[Dict[str, Any]]])- The keys of the outer dict
are region names. The values are lists, where the 7 th entry represents the ¢ th primer in that
region. Primers are represented as dicts with the following structure:

6.1. lib5c package 175



lib5¢c Documentation, Release 0.6.1

'chrom' : str,
'start' : int,
'end' : int

See 1ib5c.parsers.primers.load_primermap ().

* force_nan (Optional [str]) — If ‘always’ is passed and if the primermap contains
strand information, impossible ligations will be always set to nan. If ‘implicit’ is passed,
impossible ligations will be set to nan when implied by the strand information in the
primermap, but not when the ligations are explicitly present in the countsfile. If ‘never’
is passed, strand information will be ignored and impossible ligations will not be identified.

* dtype ({int, float})— Sets the dtype for the matrix. If the value column contains
strings this will be ignored and the dtype will be set to ‘U25’.

Returns The keys are the region names. The values are the arrays of counts values for that region.
These arrays are square and symmetric.

Return type Dict[str, np.ndarray]

lib5c.parsers.counts.load_counts_by_ name (countsfile, name_list=None, primermap=None,
locusmap=None,  force_nan="always’, re-

gion_order=None)
Loads the counts values from any .counts file into a single square, symmetric array, and returns it.

Parameters
* countsfile (str)— String reference to location of .counts file to load counts from.
* name_list (Optional [List [str]])— Ordered list of locus names as strings.

* primermap (Optional [Dict[str, List[Dict[str, Any]]]])—Thekeysof
the outer dict are region names. The values are lists, where the ith entry represents the ith
primer in that region. Primers are represented as dicts with the following structure:

{

'chrom' : str,
'start' : int,
'end' : int

See lib5Sc.parsers.primers.get_primermap().
* locusmap (Optional [LocusMap]) — Locus information as a LocusMap object.

* force_nan (Optional [str]) — If ‘always’ is passed and if the primermap contains
strand information, impossible ligations will be always set to nan. If ‘implicit’ is passed,
impossible ligations will be set to nan when implied by the strand information in the
primermap, but not when the ligations are explicitly present in the countsfile. If ‘never’
is passed, strand information will be ignored and impossible ligations will not be identified.

* region_order (Optional[List [str]])—If passed, this list will be used to deter-
mine the order in which the regions will be concatenated in. If not passed, the regions will be
concatenated in order of genomic coordinate. If name_list is passed, this kwarg is ignored.

Returns The square, symmetric array of counts.

Return type np.ndarray

176 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

lib5c.parsers.counts.load_counts_legacy (countsfile, name_parser=<function de-
fault_bin_parser>, pixelmap=None)
Loads the counts values from a binned .counts file into square, symmetric arrays and returns them.

Parameters
* countsfile (str) - String reference to location of .counts file to load counts from.

* name_parser (Optional[Callable([[str], Dict[str, Any]]]) — Func-
tion that takes in the bin name column of the countsfile and returns a dict containing key-
value pairs containing information required to identify the bin. At a minimum, this dict must
have the following structure:

{
'region': str,
'index': int

This information is necessary to deduce what region a given bin in the countsfile belongs to.
The index key is optional, but recommended. If present, its value should be the zero-based
index of the bin within the region. If not present, the pixelmap will be searched to identify
the bin index.

* pixelmap (Optional [Dict[str, List[Dict[str, Any]]]])—- The keys of
the outer dict are region names. The values are lists, where the ¢ th entry represents the 7 th
bin in that region. Bins are represented as dicts with the following structure:

{

'chrom': str,
'start': int,
'end' : int,
'name' : str

See 1ib5c.parsers.get_pixelmap (). The pixelmap is used to identify the index
of a bin within a region. If name_parser returns an index key, you can pass None here
since the index will be determined from the bin name.

Returns The keys are the region names. The values are the arrays of counts values for that region.
These arrays are square and symmetric.

Return type Dict[str, np.ndarray]

Notes
This function casts the counts values in the countsfile to floats, so it will work even if the countsfile actually
contains pseudocounts or other non-integer values.

lib5c.parsers.counts.main ()

lib5c.parsers.counts.set_cis_trans_nans (counts, aggregated_primermap)
Sets nan’s in a complete cis and trans counts matrix for ligations considered impossible according to a primermap
with strand information.

Parameters

* counts (np.ndarray) — Square, symmetric array storing the complete cis and trans
counts, with the regions arranged as implied by the aggregated_primermap

6.1. lib5c package 177



lib5¢c Documentation, Release 0.6.1

* aggregated_primermap (List [Dict[str, Any]])— The dicts in the lists rep-
resent primers, equal in number and order to the side length of the counts matrix, and have
the following structure:

{
'chrom' : str,
'start’ : int,
'end' : int,
'strand' : '+' or '-'
}
See lib5c.parsers.primers.get_primermap () and libb5c.util.

primers.aggregate_primermap ().

Notes

If the aggregated primermap passed has no strand information, this function will do nothing.
This function operates in-place.

lib5c.parsers.counts.set_nans (counts, primermap)
Sets nan’s in counts dict for ligations considered impossible according to a primermap with strand information.

Parameters

* counts (Dict[str, np.ndarray])- Thekeys are the region names. The values are
the arrays of counts values for that region. These arrays are square and symmetric.

* primermap (Dict [str, List[Dict[str, Any]]])- The keys of the outer dict
are region names. The values are lists, where the 7 th entry represents the ¢ th primer in that
region. Primers are represented as dicts with the following structure:

{

'chrom' : str,
'start' . int,
'end' : int,
'strand' : '+' or '-'

See 1ib5c.parsers.primers.get_primermap ().

Notes

If the primermap passed has no strand information, this function will do nothing.

This function operates in-place.

lib5c.parsers.genes module

Module for parsing .bed files containing gene track information.

lib5c.parsers.genes.load_gene_table (tablefile)
Similar to 1oad_genes (), but reads in a gzipped UCSC table file instead.

The main advantage of this approach is that genes parsed this way include human-readable gene symbols.

Parameters tablefile (str)— String reference to location of the gzipped table file to read.

178 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Returns

The keys are chromosome names. The values are lists of genes for that chromosome. The genes
are represented as dicts with the following structure:

{

'start’ int,

'end' int,

'name'’ str,

'id': str,

'strand': '+' or '-',

'blocks': list of dicts

Blocks typically represent exons and are represented as dicts with the following structure:

{
'start': int,
'end' : int

Return type dict of lists of dicts

lib5c.parsers.genes.load_genes (bedfile)
Loads information for genes from a .bed file into dicts and returns them.

Parameters bedfile (str)— String reference to location of .bed file to load genes from.
Returns

The keys are chromosome names. The values are lists of genes for that chromosome. The genes
are represented as dicts with the following structure:

{

'start’ int,

'end' int,

'name' str,
'strand': '+' or '-',
'"blocks': 1list of dicts

Blocks typically represent exons and are represented as dicts with the following structure:

Return type dict of lists of dicts

lib5c.parsers.genes.main ()

lib5c.parsers.hic module

Module for parsing Hi-C data from the Rao et al. 2014 paper.

lib5c.parsers.hic.load_range_from_contact_matrix (contact_matrix_file, grange, re-

gion_name=", norm_file=None)
Parses a chunk of contact information out of a Hi-C contact matrix file.

6.1. lib5c package 179



lib5¢c Documentation, Release 0.6.1

The Hi-C contact matrix file format parsed by this function is the format used in the contact matrices uploaded
to GEO for the Rao et al. 2014 paper. It is also the same format used by the Juicer tools dump command.

Parameters

* contact_matrix file (str) — String reference to the Hi-C contact matrix file to
parse.

* grange (Dict [str, Any]) - The genomic range to extract contact information for.
This should be specified as a dict with the following structure:

{

'chrom': str,
'start': int,
'end': int

* region_name (Optional [str])— Name for this genomic region. If passed, it will be
used to name the bins in the returned pixelmap.

* norm_file (Optional [str])- String reference to a file containing a Hi-C bias vector
corresponding to the contact_matrix_file. If passed, the data will be normalized
using this vector.

Returns The first element of the tuple is the extract counts matrix for the requested genomic range.
The second element of the tuple is a pixelmap generated for this region describing the specific
bins that were extracted.

Return type Tuple[np.ndarray, List[Dict[str, Any]]]

lib5c.parsers.loops module

Module for parsing tables containing categorized loop information.

lib5c.parsers.loops.load_loops (loopsfile)
Reads categorized loop file into nested dict structure.

Parameters loopsfile (str) — String reference to the loop file to parse. Each line in the loop
file corresponds to one loop. The lines are tab-separated. with four columns. These are, in order,
the category the loop was categorized into (as a string), the region name the loop is in (as a
string), the x-coordinate of the pixel which represents the loop (as an int), and the y-coordinate
of the pixel which represent the loop (as an int).

Returns

The outer keys are loop categories as strings. The next level’s keys are region names as strings.
The innermost dicts represent loops. These inner loop dicts have the following structure:

The ints represent the x and y coordinate, respectively, of the loop within the region.

Return type dict of dicts of dicts

180 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

lib5c.parsers.primer_names module

Module providing helper functions for working with primer naming conventions, necessary for parsing certain primer-
files.

lib5c.parsers.primer_names.dblalt_primer_parser (name)
The double alternating primer name parser.

Parameters name (str) — The name of the primer found in the appropriate column of the primer
bedfile.

Returns

This dict has the following structure:

{
'region': str,
"number': int,
'orientation': "3'" or "5'",
'name': str

These fields are parsed from the primer name.

Return type dict

Notes

You can write other name parsers to accommodate different primer naming conventions.

lib5c.parsers.primer_names.default_bin_parser (name)
The default bin name parser.

Parameters name (str)— The name of the bin found in the appropriate column of the bin bedfile.

Returns

This dict has the following structure:

{
'region': str,
'index': int

These fields are parsed from the bin name.

Return type dict

Notes

You can write other name parsers to accommodate different bin naming conventions.

lib5c.parsers.primer_names.default_primer_parser (name)
The default primer name parser.
Parameters name (str)— The name of the primer found in the appropriate column of the primer
bedfile.

Returns

This dict has the following structure:

6.1. lib5c package 181



lib5¢c Documentation, Release 0.6.1

'region': str,
'number': int,
'name': str

These fields are parsed from the primer name.

Return type dict

Notes

You can write other name parsers to accommodate different primer naming conventions.

lib5c.parsers.primer_names.guess_primer_name_parser (name)
Guesses the appropriate primer or bin name parser to use by looping through a list of possible parsers and testing
if they work on a given primer name.

Parameters name (str)— The name of a primer to use for testing.
Returns The parser thought to be appropriate for this kind of primer name.

Return type function

libSc.parsers.primers module

Module for parsing .bed files containing 5C primer and bin information.

lib5c.parsers.primers.get_pixelmap_ legacy (bedfile, name_parser=<function de-
fault_bin_parser>)

Parameters

* bedfile (str) — String reference to a binned primer bedfile to use to generate the pix-
elmap.

* name_parser (Optional[Callable([str], Dict[str, Any]]]) — Func-
tion that takes in the bin name column of the bedfile (the fourth column) and returns a dict
containing key-value pairs to be added to the dict that represents that bin. At a minimum,
this dict must have the following structure:

{

'region': str

If the dict includes any keys that are already typically included in the bin dict, the values
returned by this function will overwrite the usual values.

Returns

The keys of the outer dict are region names. The values are lists, where the ¢ th entry represents
the ¢ th bin in that region. Bins are represented as dicts with the following structure:

{

'chrom': str,
'start': int,
'end' . int,
'name' : str

182 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

Additional keys may be present if returned by name_parser.

Return type Dict[str, List[Dict[str, Any]]]

Notes

A pixelmap is a mapping from bins (specified by a region name and bin or primer index) to the genomic range
covered by those bins.

lib5c.parsers.primers.load_primermap (bedfile, name_parser=None, strand_index=5, re-

gion_index=None, column_names=None)

Parameters

Returns

* bedfile (str)— String reference to a primer bedfile to use to generate the primermap.

* name_parser (Optional[Callable([[str], Dict[str, Any]]]) — Func-

tion that takes in the primer name column of the bedfile (the fourth column) and returns
a dict containing key-value pairs to be added to the dict that represents that primer. At a
minimum, this dict must have the following structure:

{

'region': string

If the dict includes any keys that are already typically included in the primer dict, the values
returned by this function will overwrite the usual values. If None is passed, an appropriate
name parser will be guessed based on the primer/bin names.

strand_index (Optional [int])—If anintis passed, the column with that index will
be used to determine strand information for the primer. If None is passed, the algorithm will
try to guess which column contains this information. If this fails, strand information will
not be included in the primer dict. Acceptable strings to indicate primer strand are ‘F’/’R’,
‘FOR’/’REV’, and ‘+’/’-‘. Primers on the + strand will be assumed to be oriented in the
3’ direction, and primers on the - strand will be assumed to be oriented in the 5° direction,
unless an ‘orientation’ key is provided in the dict returned by name_parser.

region_index (Optional [int])—If anintis passed, the column with that index will
be used to determine the region the primer is in. This makes specifying region_parser
optional and overrides the region it returns.

column_names (Optional [List [str]])—Passalist of strings equal to the number
of columns in the bedfile, describing the columns. The first four elements will be ignored.
Special values include ‘strand’, which will set st rand_index, and ‘region’, which will
override region_index. All other values will end up as keys in the primer dicts. If this is
not passed, this function will look for a header line in the primerfile, and if one is not found,
a default header will be assumed.

The keys of the outer dict are region names. The values are lists, where the ¢ th entry represents
the ¢ th primer in that region. Primers are represented as dicts with the following structure:

{

'region' : str
'chrom' : str,
'start' : int,
'end' : int,
'name'’ : str,

(continues on next page)

6.1. lib5c package

183



lib5¢c Documentation, Release 0.6.1

(continued from previous page)

'strand’ : '+" or '-',
'orientation': "3'" or "5'"

though strand and orientation may not be present, and additional keys may be present if returned
by name_parser, passed in column_names, or if a header line is present.

Return type Dict[str, List[Dict[str, Any]]]

Notes
A primermap is a mapping from primers (specified by a region name and primer index) to the genomic range
covered by those primers.

lib5c.parsers.primers.main ()

lib5c.parsers.scaled module

Module for parsing .scaled files.

lib5c.parsers.scaled.load_scaled (scaledfile)
Loads the scaled values from a .scaled file into square, symmetric arrays and returns them.

Parameters scaledfile (str)— String reference to location of .scaled file to load counts from.

Returns The keys are the region names. The values are the arrays of scaled values for that region.
These arrays are square and symmetric.

Return type dict of 2d arrays

lib5c.parsers.scaled.main ()

libSc.parsers.table module

Module for parsing table files, which function as a simple extension of .counts files to multiple replicates.

lib5c.parsers.table.load_table (filename, primermap, sep="\t’, dtype=<class 'float’>)
Loads a table into a counts_superdict structure.

Parameters
* filename (str)— The table file to load.
* primermap (primermap or pixelmap)— Defines the FFLIJs or bin-bin pairs.
* sep (str)— The separator used in the table file.

* dtype (numpy-compatible dtype)-— The dtype to use when constructing the arrays
in the counts_superdict.

Returns The loaded counts_superdict.

Return type counts_superdict

184 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

lib5c.parsers.util module

Module containing utility functions for file parsing.

lib5c.parsers.util.null_value (dtype)
Utility method to get the appropriate null value given a numpy dtype.

Pandas has some logic for this, see http://pandas.pydata.org/pandas-docs/stable/missing_data.html
Parameters dtype (np. dtype) — The dtype to return a null value for.
Returns The default null value for this dtype.
Return type Any

lib5c.parsers.util.parse_field (val)
Utility function for parsing a value that could be an int, a float, or a string.

Parameters val (str)— The value to parse.
Returns The parsed value.

Return type Union[int, float, str]

Module contents

Subpackage for parsing various text files containing data important for SC analysis.

lib5c.plotters package

Subpackages

lib5c.plotters.extendable package

Submodules
lib5c.plotters.extendable.base_extendable_heatmap module

Module for the BaseExtendableHeatmap class, which provides the basic functionality of the extendable heatmap
plotter.

class lib5c.plotters.extendable.base_extendable_heatmap.BaseExtendableHeatmap (array,

grange_x,
grange_y=None,
col-
orscale=None,
col-
ormap="obs’,
norm=None)

Bases: 1ib5c.plotters.extendable.extendable figure.ExtendableFigure

Minimal implementation of an ExtendableFigure organized around a contact frequency heatmap.

The heatmap is plotted using plt .imshow () using data from the array attribute, colored using the other
attributes, and the resulting axis is accessible at h [ ' root '] where h is the ExtendableHeatmap instance.

6.1. lib5c package 185


http://pandas.pydata.org/pandas-docs/stable/missing_data.html

lib5¢c Documentation, Release 0.6.1

New axes can be added to the margins of the heatmap by calling add_margin_ax (). The axis of the new
axis that is parallel to the heatmap will have its limits set to match the grange_x or grange_y attributes.
This allows plotting features on the margin axes using genomic coordinates instead of having to convert to pixel
coordinates.

The root heatmap axis is still kept in units of pixels. To make drawing on this axis easier, this class provides
transform_feature (), which will transform a genomic feature dict into heatmap pixel units.

array
Array of values to plot in the heatmap. Must be square.

Type np.ndarray

grange_x
The genomic range represented by the x-axis of this heatmap. The dict should have the form:
{
'chrom': str,
'start': int,
'end': int
}
Type dict
grange_y
The genomic range represented by the y-axis of this heatmap. If None, the heatmap is assumed to be
symmetric.

Type dict, optional

colorscale
The (min, max) of the color range to plot the values in the array with.

Type tuple of float

colormap
The colormap to use when drawing the heatmap. Strings  will be passed to
lib5c.plotters.colormaps.get_colormap(). If array contains strings, pass a dict mapping those strings to
colors.

Type str or matplotlib colormap or dict of colors

norm
Pass an instance of matplotlib.colors.Normalize to apply this normalization to the heatmap
and colorbar.

Type matplotlib.colors.Normalize, optional

add_colorbar (loc="right’, size="10%’, pad=0.1, new_ax_name="colorbar’)
Adds a colorbar to the heatmap in a new axis.

Parameters

e loc({'top', 'bottom', 'left', 'right'})— Which side of the heatmap to
add the new colorbar to.

* size (str)-The size of the new axis as a percentage of the main heatmap width. Should
be passed as a string ending in ‘%’.

* pad (float) - The padding to use between the existing parts of the figure and the newly
added axis.

186 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

* new_ax_name (str) — A name for the new axis. The axis will be accessible as
h[new_ax_name] where h is this ExtendableHeatmap instance.

Returns The newly added colorbar.
Return type pyplot colorbar

add_margin_ax (loc="bottom’, size="10%"’, pad=0.0, new_ax_name="new_h_axis’, axis_limits=(0,

1))

Adds a new axis to the margin of this ExtendableHeatmap.
Parameters

e loc ({'top', 'bottom', 'left', 'right'})— Which side of the figure to
add the new axis to.

* size (str)—Thesize of the new axis as a percentage of the main heatmap width. Should
be passed as a string ending in ‘%’.

* pad (float) - The padding to use between the existing parts of the figure and the newly
added axis.

* new_ax_name (str) — A name for the new axis. The axis will be accessible as
h [new_ax_name] where h is this ExtendableHeatmap instance.

Returns The newly added axis.
Return type pyplot axis

transform_coord (coord, axis="x’)
Convenience function for transforming genomic coordinates to heatmap pixel coordinates along a specified
axis.

Parameters

* coord (int)— The genomic coordinate in base pairs.

e axis ({'x"', 'y'})- The axis to convert the coordinate for.
Returns The coord expressed in heatmap pixel coordinates along the requested axis.
Return type float

transform_feature (feature, axis=’x’)
Uses transform_coord () to transform an entire genomic feature dict to heatmap pixel coordinates.

Parameters

» feature (dict) — Represents a genomic feature. Should have ‘chrom’, ‘start’, and
‘end’ keys. The values for ‘start’ and ‘end’ should be in base pair units.

e axis ({'x"', 'y'})- The axis to convert the feature for.

Returns Will have keys ‘chrom’, ‘start’, and ‘end’, but the values for ‘start’ and ‘end’ will now
be in units of heatmap pixels along the specified axis.

Return type dict

lib5c.plotters.extendable.bed_extendable_heatmap module

Module for the BedExtendableHeatmap class, which adds bed track plotting functionality for the extendable heatmap
system.

6.1. lib5c package 187



lib5¢c Documentation, Release 0.6.1

class lib5c.plotters.extendable.bed_extendable_heatmap.BedExtendableHeatmap (array,

Bases:

grange_x,
grange_y=None,
col-
orscale=None,
col-
ormap="obs’,
norm=None)

lib5c.plotters.extendable.base_extendable _heatmap.

BaseExtendableHeatmap

ExtendableHeatmap mixin class providing bed track plotting functionality.

add_bed_track (bed_tracks, loc="bottom’, size="3%’, pad=0.0, name="bed’, axis_limits=(0, 1), in-

tron_height=0.05, colors=None, track_label=None)

Adds one bed track along either the x- or y-axis of the heatmap.

Parameters

bed_tracks (1ist of dict) — Each dict should represent a bed feature and could
have the following keys:

{

'chrom' : str,
'start' : int,
'end' : int,
'strand': '+' or '-'

The ‘strand’ key is optional and is only used for color-coding bed features when colors
is passed.

loc({'top', 'bottom', 'left', 'right'})— Which side of the heatmap to
add the new bed track to.

size (str)— The size of the new axis as a percentage of the main heatmap width. Should
be passed as a string ending in ‘%’.

pad (f1loat)— The padding to use between the existing parts of the figure and the newly
added axis.

name (st r)— Base name for the new axis. This name will be prefixed with the orientation
of the track (‘vertical’ or ‘horizontal’).

axis_limits (tuple of float)— Axis limits for the non-genomic axis of the bed
track.

intron_height (float)— The height to draw each bed feature with.

colors (dict, optional) — Map from the value of the ‘strand’ key in the
bed_tracks dicts (usually ‘+” or *-°) to color name for bed features with that strand
value (i.e., orientation). If not provided for a given strand or if the bed feature doesn’t
have a ‘strand’ key the color is black by default.

track_label (str, optional)—Pass a string to label the track.

Returns The newly added bed track axis.

Return type pyplot axis

add_bed_tracks (bed_tracks, size="3%’, pad=0.0, axis_limits=(0, 1), intron_height=0.05,

name=None, colors=None, track_label=None)

Adds bed tracks for a single set of bed features to both the bottom and left side of the heatmap by calling

188

Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

add_bed_track () twice.

Parameters

bed tracks (1ist of dict) - Each dict should represent a bed feature and could
have the following keys:

{

'chrom' : str,
'start' : int,
'end' : int,
'strand': '+' or '-'

The ‘strand’ key is optional and is only used for color-coding bed features when colors
is passed.

size (str)—The size of the new axis as a percentage of the main heatmap width. Should
be passed as a string ending in ‘%’.

pad (f1oat)— The padding to use between the existing parts of the figure and the newly
added axis.

axis_limits (tuple of float)— Axis limits for the non-genomic axis of the bed
track.

intron_height (fI1oat) — The height to draw each bed feature with.

name (st r)— Base name for the new axis. This name will be prefixed with the orientation
of the track (‘vertical’ or ‘horizontal’).

colors (dict, optional) — Map from the value of the ‘strand’ key in the
bed_tracks dicts (usually ‘+” or *-°) to color name for bed features with that strand
value (i.e., orientation). If not provided for a given strand or if the bed feature doesn’t
have a ‘strand’ key the color is black by default.

track_label (str, optional)- Pass a string to label the track.

Returns The newly added bed track axes.

Return type list of pyplot axes

lib5c.plotters.extendable.chipseq_extendable_heatmap module

Module for the ChipSeqExtendableHeatmap class, which adds ChIP-seq track plotting functionality for the extendable

heatmap system.

class lib5c.plotters.extendable.chipseq_extendable_heatmap.ChipSeqExtendableHeatmap (array,

Bases:

lib5c.plotters.extendable.base_extendable heatmap.

BaseExtendableHeatmap

ExtendableHeatmap mixin class providing ChIP-seq track plotting functionality.

6.1. lib5c package

189

grange_x
grange_y
col-

orscale=|
col-

ormap="c
norm=Nc¢



lib5¢c Documentation, Release 0.6.1

add_chipseq track (features, loc="bottom’, size="10%’, pad=0.05, axis_limits=None,

linewidth=0.4, name="chipseq’, color="k’, track_label=None)

Adds one ChIP-seq track along either the x- or y-axis of the heatmap.

Parameters

features (1ist of dict)- Each feature should be a dict with at least the following
keys:

{

'chrom': str,
'start': int,
'end': int,
'value': float

Each feature will be drawn as a rectangle on the heatmap from ‘start’ to ‘end’ with height
‘value’. If the ‘value’ key is missing, it will be assumed to be one for all features. To get
data in this form from bigwig files, consult 1ib5c.contrib.pybigwig.bigwig.
BigWig.query ().

loc ({'top', 'bottom', 'left', 'right'})-— Which side of the heatmap to
add the new ChIP-seq track to.

size (str)— The size of the new axis as a percentage of the main heatmap width. Should
be passed as a string ending in ‘%’.

pad (float) - The padding to use between the existing parts of the figure and the newly
added axis.

axis_limits (tuple of float, optional)— Axis limits for the ‘value’ of the
plotted features (heights of the rectangles) as a (min, max) tuple. Pass None to automati-
cally scale the axis limits.

linewidth (float) — The linewidth to use when drawing the rectangles. Pass smaller
values for sharper features/peaks.

name (st r)— Base name for the new axis. This name will be prefixed with the orientation
of the track (‘vertical or ‘horizontal’).

color (matplotlib color)— The color to draw the rectangles with.

track_label (str, optional)- Pass a string to label the track.

Returns The newly added ChIP-seq track axis.

Return type pyplot axis

add_chipseq tracks (features, size="10%’, pad=0.05, axis_limits=None, linewidth=0.4,

Adds ChIP-seq tracks for a single set of features to both the bottom and left side of the heatmap by calling

name="chipseq’, color="k’, track_label=None)

add_chipseq_track () twice.

Parameters

features (1ist of dict)— Each feature should be a dict with at least the following
keys:

{

'chrom': str,
'start': int,
'end': int,

(continues on next page)

190

Chapter 6. lib5c




lib5¢c Documentation, Release 0.6.1

(continued from previous page)

'value': float

Each feature will be drawn as a rectangle on the heatmap from ‘start’ to ‘end’ with height
‘value’. If the ‘value’ key is missing, it will be assumed to be one for all features. To get
data in this form from bigwig files, consult 1ib5c.contrib.pybigwig.bigwig.
BigWig.query ().

* size (str)-The size of the new axis as a percentage of the main heatmap width. Should
be passed as a string ending in ‘%’.

* pad (float)- The padding to use between the existing parts of the figure and the newly
added axis.

e axis_limits (tuple of float, optional)— Axis limits for the ‘value’ of the
plotted features (heights of the rectangles) as a (min, max) tuple. Pass None to automati-
cally scale the axis limits.

e linewidth (float) — The linewidth to use when drawing the rectangles. Pass smaller
values for sharper features/peaks.

* name (str)— Base name for the new axis. This name will be prefixed with the orientation
of the track (‘vertical’ or ‘horizontal’).

e color (matplotlib color)— The color to draw the rectangles with.
* track_label (str, optional)-—Pass a string to label the track.
Returns The newly added ChIP-seq track axes.
Return type list of pyplot axes

lib5c.plotters.extendable.cluster_extendable_heatmap module

Module for the ClusterExtendableHeatmap class, which adds cluster outlining functionality for the extendable heatmap

system.

class lib5c.plotters.extendable.cluster_extendable_heatmap.ClusterExtendableHeatmap (array,

Bases: libbc.plotters.extendable.base_extendable _heatmap.
BaseExtendableHeatmap

ExtendableHeatmap mixin class providing cluster outlining functionality.

add_clusters (cluster_array, colors=None, weight="100x", outline_color=None, out-
line_weight="2x", labels=None, fontsize=7)
Adds clusters to the heatmap surface.

Parameters

* cluster_array (np.ndarray)— Array of cluster IDs. Should match size and shape
of the underlying array this ExtendableHeatmap was constructed with.

6.1.

lib5¢c package 191

grange_x
grange_y
col-

orscale=|
col-

ormap="
norm=Nc



lib5¢c Documentation, Release 0.6.1

colors ('random' or single color or 1list/dict of colors or
None) — Pass ‘random’ for random colors, pass a dict mapping cluster IDs to matplotlib
colors to outline each cluster in the indicated color, pass None to skip outlining clusters.

weight (numeric or str) - Pass a numeric to set the linewidth for the cluster out-
lines. Pass a string ending in “x” (such as “100x”) to specify the line width as a multiple
of the inverse of the number of pixels in the heatmap.

outline_color (matplotlib color or None)-Passamatplotlib color to out-
line the outlines (e.g. with neon green) to make them stand out more. Pass None to skip

adding this extra outline.
outline_weight (numeric or str) - ass a numeric to set the linewidth for the

outlines of the cluster outlines. Pass a string ending in “x” (such as “2x”) to specify the
line width as a multiple of the outline linewidth.

labels (True, dict of str, or None)-PassTrue to simply label the clusters
by their ID. Pass a mapping from cluster IDs to labels to label the clusters with a the labels.
Pass None to skip outlining clusters.

fontsize (numeric)— The font size to use for cluster labels.

label_cluster (cluster, label, fontsize=7)
Labels a cluster.

Parameters

cluster (list of {'x': int, 'y': int} dicts)- The cluster to label.
label (str) - The string to label the cluster with.

fontsize (numeric)— The fontsize to use for the label.

outline_ cluster (cluster, color, linewidth=2)
Outlines a single cluster in the specified color.

Parameters

r

cluster (I1ist of {'x': 1int, 'y': 1int} dicts) - The cluster to out-

line.
color (matplotlib color)— The color to outline in.

linewidth (numeric) — The linewidth to use.

lib5c.plotters.extendable.domain_extendable_heatmap module

Module for the DomainExtendableHeatmap class, which adds domain outlining functionality for the extendable

heatmap system.

class lib5c.plotters.extendable.domain_extendable_heatmap.DomainExtendableHeatmap (array,

Bases:

libbc.plotters.extendable.base_extendable heatmap.

BaseExtendableHeatmap

ExtendableHeatmap mixin class providing ChIP-seq domain outlining functionality.

192

Chapter 6. lib5c

grange_x,
grange_y=N
col-

orscale=Noi
col-

ormap="obs
norm=None



lib5¢c Documentation, Release 0.6.1

outline_domain (domain, color="green’, linewidth=2, upper=True)
Outlines a contact domain on the heatmap.

Parameters

* domain (dict)— A genomic feature dict describing the domain to be outlinerd. Should
be a dict with at least the following keys:

{

'chrom': str,
'start': int,
'end': int

’start’ and ‘end’ should be in units of base pairs (this function will handle the conversion
to heatmap pixel units).

¢ color (matplotlib color)- The color to outline the domain with.

* linewidth (float) — The line width to use when outlining the domain. Pass a larger
number for a thicker, more visible outline.

* upper (bool) — Pass True to draw the outline in the upper triangle of the heatmap. Pass
False to draw it in the lower triangle.

outline_domains (domains, color="green’, linewidth=2, upper=True)
Outlines a set of contact domains on the heatmap by repeatedly calling out 1ine_domain ().

Parameters

* domains (1ist of dict)— A list of domains, where each domain is represented as
genomic feature dict with at least the following keys:

{

'chrom': str,
'start': int,
'end': int

’start’ and ‘end’ should be in units of base pairs (this function will handle the conversion
to heatmap pixel units).

e color (matplotlib color)- The color to outline the domains with.

* linewidth (f1oat)— The line width to use when outlining the domains. Pass a larger
number for a thicker, more visible outline.

* upper (bool)— Pass True to draw the outlines in the upper triangle of the heatmap. Pass
False to draw them in the lower triangle.

lib5c.plotters.extendable.extendable_figure module

Module for the ExtendableFigure base class.

class lib5c.plotters.extendable.extendable_figure.ExtendableFigure
Bases: object

Base class for figures that can interactively and sequentially tack on new axes to themselves.

Uses a divider attribute obtained from mpl_toolkits.axes_gridl.make_axes_locatable ()
to add new axes to the figure. Clients can call add_ax () to add a new axis.

6.1. lib5c package 193



lib5¢c Documentation, Release 0.6.1

All the axes in the ExtendableFigure can be accessed by name using a dict- like interface: £ [name] where £ is
the ExtendableFigure instance and name is the name of the axis. The ExtendableFigure starts out with one axis
already present, called ‘root’.

axes
The collection of named Axes represented by this object.

Type dict of matplotlib.axes.Axes
fig
The Figure instance this object represents.
Type matplotlib.figure.Figure

divider
This object serves as a coordinator for the allocation of new Axes to be appended to this ExtendableFigure.

Type mpl_toolkits.axes_gridl.axes_divider.AxesDivider

Examples

>>> import numpy as np

>>> from lib5c.plotters.extendable.extendable_ figure import ExtendableFigure
>>> xs = np.arange (0, 10)

>>> f = ExtendableFigure()

>>> f['root'].imshow(np.arange (100) .reshape((10,10)))
<matplotlib.image.AxesImage object at ...>

>>> f.add_ax('sin')

<matplotlib.axes._axes.Axes object at ...>

>>> f['sin'].plot (xs, np.sin(xs))
[<matplotlib.lines.Line2D object at ...>]

>>> f.add_colorbar ('root')

>>> f.save ('test/extendablefigure.png')

add_ax (name, loc="bottom’, size="10%’, pad=0.1)
Adds a new axis to this ExtendableFigure.

Parameters

* name (str) — A name for the new axis. The axis will be accessible as
f [new_ax_name] where f is this ExtendableFigure instance.

* loc ({'top', 'bottom', 'left', 'right'})— Which side of the figure to
add the new axis to.

* size (str)—The size of the new axis as a percentage of the main figure size. Should be
passed as a string ending in ‘%’.

* pad (float) - The padding to use between the existing parts of the figure and the newly
added axis.

Returns The newly created axis.
Return type pyplot axis

add_colorbar (source_ax_name, loc="right’, size="10%’, pad=0.1, new_ax_name="colorbar’)
Adds a colorbar to the heatmap in a new axis.

Parameters

¢ source_ax_name (str) — The name of the axis that this should be the colorbar for.
This is where matplotlib will look to find color information for the new colorbar.

194 Chapter 6. lib5c



lib5¢c Documentation, Release 0.6.1

* loc ({'top', 'bottom', 'left', 'right'})— Which side of the figure to
add the new colorbar to.

* size (str)—The size of the new axis as a percentage of the main figure size. Should be
passed as a string ending in ‘%’.

* pad (float) - The padding to use between the existing parts of the figure and the newly
added axis.

* new_ax_name (str) — A name for the new axis. The axis will be accessible as
f [new_ax_name] where f is this ExtendableFigure instance.

close ()
Clears and closes the pyplot figure related to this ExtendableFigure.

save (filename)
Saves this ExtendableHeatmap to the disk as an image file.

Parameters filename (str) - The filename to save the image to.

lib5c.plotters.extendable.extendable_heatmap module

class lib5c.plotters.extendable.extendable_heatmap.ExtendableHeatmap (array,
grange_x,
grange_y=None,
col-
orscale=None,
col-
ormap="o0bs’,

norm=None)
Bases: lib5c.plotters.extendable.chipseq extendable heatmap.

ChipSeqExtendableHeatmap, lib5c.plotters.extendable.domain_extendable heatmap.
DomainExtendableHeatmap, 1ib5c.plotters.extendable.gene_extendable heatmap.
GeneExtendableHeatmap, 1ib5c.plotters.extendable.legend extendable_ heatmap.
LegendExtendableHeatmap, lib5bc.plotters.extendable.ruler._extendable heatmap.
RulerExtendableHeatmap, lib5Sc.plotters.extendable.cluster_extendable heatmap.
ClusterExtendableHeatmap, 1ib5c.plotters.extendable.snp_extendable heatmap.
SNPExtendableHeatmap, lib5c.plotters.extendable.motif_extendable heatmap.
MotifExtendableHeatmap, 1ib5c.plotters.extendable.rectangle_extendable heatmap.
RectangleExtendableHeatmap, libbc.plotters.extendable.
bed_extendable _heatmap.BedExtendableHeatmap, lib5c.plotters.extendable.
base_extendable heatmap.BaseExtendableHeatmap

Fully-extended ExtendableHeatmap class. Inherits from BaseExtendableHeatmap as well as all feature-
providing classes.

Examples

>>> import numpy as np

>>> import matplotlib.patches as patches

>>> import matplotlib.colors as colors

>>> from lib5c.parsers.counts import load_counts

>>> from lib5c.parsers.primers import load_primermap

>>> from lib5c.parsers.bed import load_features

>>> from lib5c.parsers.table import load_table

>>> from lib5c.plotters.extendable import ExtendableHeatmap

(continues on next page)

6.1. lib5c package 195



lib5¢c Documentation, Release 0.6.1

(c